Guosong Shang , Tao Zhou , Xinyuan Yan , Kunyu He , Bin Liu , Zhebin Feng , Junpeng Xu , Xinguang Yu , Yanyang Zhang
{"title":"多尺度分析揭示海马子野对慢性皮质醇过度暴露的脆弱性:来自库欣病的证据。","authors":"Guosong Shang , Tao Zhou , Xinyuan Yan , Kunyu He , Bin Liu , Zhebin Feng , Junpeng Xu , Xinguang Yu , Yanyang Zhang","doi":"10.1016/j.bpsc.2024.12.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. In this study, we explored structural and functional alterations of hippocampal (HP) subfields in Cushing’s disease (CD), an endogenous model of chronic cortisol overexposure.</div></div><div><h3>Methods</h3><div>Utilizing structural and resting-state functional magnetic resonance imaging data from 169 participants (86 patients with CD and 83 healthy control participants [HCs]) recruited from a single center, we investigated specific structural changes in HP subfields and explored the functional connectivity alterations driven by these structural abnormalities. We also analyzed potential associative mechanisms between these changes and biological attributes, neuropsychiatric representations, cognitive function, and gene expression profiles.</div></div><div><h3>Results</h3><div>Compared with HCs, patients with CD exhibited significant bilateral volume reductions in multiple HP subfields. Notably, volumetric decreases in the left HP body and tail subfields were significantly correlated with cortisol levels, Montreal Cognitive Assessment scores, and quality of life measures. Disrupted connectivity between the structurally abnormal HP subfields and the ventromedial prefrontal cortex may impair reward-based decision making and emotional regulation, with this dysconnectivity being linked to structural changes in right HP subfields. Another region that exhibited dysconnectivity was located in the left pallidum and putamen. Gene expression patterns associated with synaptic components may underlie these macrostructural alterations.</div></div><div><h3>Conclusions</h3><div>Our findings elucidate the subfield-specific effects of chronic cortisol overexposure on the hippocampus, enhancing understanding of shared neuropathological traits linked to cortisol dysregulation in neuropsychiatric and neurodegenerative disorders.</div></div>","PeriodicalId":54231,"journal":{"name":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","volume":"10 8","pages":"Pages 865-876"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence From Cushing’s Disease\",\"authors\":\"Guosong Shang , Tao Zhou , Xinyuan Yan , Kunyu He , Bin Liu , Zhebin Feng , Junpeng Xu , Xinguang Yu , Yanyang Zhang\",\"doi\":\"10.1016/j.bpsc.2024.12.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. In this study, we explored structural and functional alterations of hippocampal (HP) subfields in Cushing’s disease (CD), an endogenous model of chronic cortisol overexposure.</div></div><div><h3>Methods</h3><div>Utilizing structural and resting-state functional magnetic resonance imaging data from 169 participants (86 patients with CD and 83 healthy control participants [HCs]) recruited from a single center, we investigated specific structural changes in HP subfields and explored the functional connectivity alterations driven by these structural abnormalities. We also analyzed potential associative mechanisms between these changes and biological attributes, neuropsychiatric representations, cognitive function, and gene expression profiles.</div></div><div><h3>Results</h3><div>Compared with HCs, patients with CD exhibited significant bilateral volume reductions in multiple HP subfields. Notably, volumetric decreases in the left HP body and tail subfields were significantly correlated with cortisol levels, Montreal Cognitive Assessment scores, and quality of life measures. Disrupted connectivity between the structurally abnormal HP subfields and the ventromedial prefrontal cortex may impair reward-based decision making and emotional regulation, with this dysconnectivity being linked to structural changes in right HP subfields. Another region that exhibited dysconnectivity was located in the left pallidum and putamen. Gene expression patterns associated with synaptic components may underlie these macrostructural alterations.</div></div><div><h3>Conclusions</h3><div>Our findings elucidate the subfield-specific effects of chronic cortisol overexposure on the hippocampus, enhancing understanding of shared neuropathological traits linked to cortisol dysregulation in neuropsychiatric and neurodegenerative disorders.</div></div>\",\"PeriodicalId\":54231,\"journal\":{\"name\":\"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging\",\"volume\":\"10 8\",\"pages\":\"Pages 865-876\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245190222500014X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190222500014X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Multiscale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence From Cushing’s Disease
Background
Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. In this study, we explored structural and functional alterations of hippocampal (HP) subfields in Cushing’s disease (CD), an endogenous model of chronic cortisol overexposure.
Methods
Utilizing structural and resting-state functional magnetic resonance imaging data from 169 participants (86 patients with CD and 83 healthy control participants [HCs]) recruited from a single center, we investigated specific structural changes in HP subfields and explored the functional connectivity alterations driven by these structural abnormalities. We also analyzed potential associative mechanisms between these changes and biological attributes, neuropsychiatric representations, cognitive function, and gene expression profiles.
Results
Compared with HCs, patients with CD exhibited significant bilateral volume reductions in multiple HP subfields. Notably, volumetric decreases in the left HP body and tail subfields were significantly correlated with cortisol levels, Montreal Cognitive Assessment scores, and quality of life measures. Disrupted connectivity between the structurally abnormal HP subfields and the ventromedial prefrontal cortex may impair reward-based decision making and emotional regulation, with this dysconnectivity being linked to structural changes in right HP subfields. Another region that exhibited dysconnectivity was located in the left pallidum and putamen. Gene expression patterns associated with synaptic components may underlie these macrostructural alterations.
Conclusions
Our findings elucidate the subfield-specific effects of chronic cortisol overexposure on the hippocampus, enhancing understanding of shared neuropathological traits linked to cortisol dysregulation in neuropsychiatric and neurodegenerative disorders.
期刊介绍:
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging is an official journal of the Society for Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms, and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal focuses on studies using the tools and constructs of cognitive neuroscience, including the full range of non-invasive neuroimaging and human extra- and intracranial physiological recording methodologies. It publishes both basic and clinical studies, including those that incorporate genetic data, pharmacological challenges, and computational modeling approaches. The journal publishes novel results of original research which represent an important new lead or significant impact on the field. Reviews and commentaries that focus on topics of current research and interest are also encouraged.