Chongyang Wang , Ting Wang , Qingrun He , Qili Hou , Liuyuan Duan , Ruochen Hu , Yu Han , Yongchun Yang , Houhui Song , Zengqi Yang
{"title":"抑制典型的Wnt/β-catenin通路干扰巨噬细胞作用抑制伪狂犬病毒增殖。","authors":"Chongyang Wang , Ting Wang , Qingrun He , Qili Hou , Liuyuan Duan , Ruochen Hu , Yu Han , Yongchun Yang , Houhui Song , Zengqi Yang","doi":"10.1016/j.vetmic.2025.110373","DOIUrl":null,"url":null,"abstract":"<div><div>Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential “life-threatening zoonosis” since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown. In this study, the antiviral activities of the Wnt inhibitors (Adavivint, CCT251545, FH535, and iCRT14) were identified. Applying these inhibitors significantly inhibited PRV proliferation in different cell lines. Among them, CCT251545 presented the strongest anti-PRV activity with IC<sub>50</sub> values less than 200 nM. Our <em>in vivo</em> studies showed that treatment with CCT251545 remarkedly decreased the viral loads and protected mice challenged with PRV. Further study found that CCT251545 neither had a virucidal effect nor affected viral adsorption while mainly interfering with the entry process of the PRV life cycle. Using the FITC-dextran uptake assay, we found that CCT251545 inhibited macropinocytosis. The formation of membrane protrusions, which is important for macropinocytosis, was also inhibited by CCT251545. Consistent with this, knockout of β-catenin suppressed the PRV macropinocytosis and the formation of protrusions. On the contrary, LiCl treatment significantly stimulated the protrusion formation and the PRV entry. Together, these findings suggest that suppression of the Wnt/β-catenin pathway inhibits the macropinocytosis-dependent entry of PRV, thereby providing potential targets for developing antiviral agents against PRV.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"301 ","pages":"Article 110373"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of the canonical Wnt/β-catenin pathway interferes with macropinocytosis to suppress pseudorabies virus proliferation\",\"authors\":\"Chongyang Wang , Ting Wang , Qingrun He , Qili Hou , Liuyuan Duan , Ruochen Hu , Yu Han , Yongchun Yang , Houhui Song , Zengqi Yang\",\"doi\":\"10.1016/j.vetmic.2025.110373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential “life-threatening zoonosis” since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown. In this study, the antiviral activities of the Wnt inhibitors (Adavivint, CCT251545, FH535, and iCRT14) were identified. Applying these inhibitors significantly inhibited PRV proliferation in different cell lines. Among them, CCT251545 presented the strongest anti-PRV activity with IC<sub>50</sub> values less than 200 nM. Our <em>in vivo</em> studies showed that treatment with CCT251545 remarkedly decreased the viral loads and protected mice challenged with PRV. Further study found that CCT251545 neither had a virucidal effect nor affected viral adsorption while mainly interfering with the entry process of the PRV life cycle. Using the FITC-dextran uptake assay, we found that CCT251545 inhibited macropinocytosis. The formation of membrane protrusions, which is important for macropinocytosis, was also inhibited by CCT251545. Consistent with this, knockout of β-catenin suppressed the PRV macropinocytosis and the formation of protrusions. On the contrary, LiCl treatment significantly stimulated the protrusion formation and the PRV entry. Together, these findings suggest that suppression of the Wnt/β-catenin pathway inhibits the macropinocytosis-dependent entry of PRV, thereby providing potential targets for developing antiviral agents against PRV.</div></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"301 \",\"pages\":\"Article 110373\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113525000082\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000082","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Inhibition of the canonical Wnt/β-catenin pathway interferes with macropinocytosis to suppress pseudorabies virus proliferation
Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential “life-threatening zoonosis” since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown. In this study, the antiviral activities of the Wnt inhibitors (Adavivint, CCT251545, FH535, and iCRT14) were identified. Applying these inhibitors significantly inhibited PRV proliferation in different cell lines. Among them, CCT251545 presented the strongest anti-PRV activity with IC50 values less than 200 nM. Our in vivo studies showed that treatment with CCT251545 remarkedly decreased the viral loads and protected mice challenged with PRV. Further study found that CCT251545 neither had a virucidal effect nor affected viral adsorption while mainly interfering with the entry process of the PRV life cycle. Using the FITC-dextran uptake assay, we found that CCT251545 inhibited macropinocytosis. The formation of membrane protrusions, which is important for macropinocytosis, was also inhibited by CCT251545. Consistent with this, knockout of β-catenin suppressed the PRV macropinocytosis and the formation of protrusions. On the contrary, LiCl treatment significantly stimulated the protrusion formation and the PRV entry. Together, these findings suggest that suppression of the Wnt/β-catenin pathway inhibits the macropinocytosis-dependent entry of PRV, thereby providing potential targets for developing antiviral agents against PRV.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.