{"title":"对热液热单胞菌的基因组分析:在工业生物技术中的潜在应用。","authors":"Songül Yaşar Yıldız","doi":"10.1007/s11274-024-04240-3","DOIUrl":null,"url":null,"abstract":"<p><p>Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.106, revealing distinct metabolic pathways and stress response mechanisms. The genome annotation highlighted strain-specific variations, such as enhanced motility and chemotaxis capabilities in HOT.CON.106 and a stronger genomic stability emphasis in DSM 14834. Comparative analysis with other Thermomonas species demonstrated that T. hydrothermalis possesses a unique genomic architecture, including genes for thermostable enzymes (e.g., amylases and pullulanases) and secondary metabolite biosynthesis. These enzymes and metabolites have significant industrial potential in high-temperature processes such as bioenergy production, bioplastics synthesis, and bioremediation. The findings underscore the relative differentiation between the strains and their broader implications for sustainable biotechnology, offering a basis for further exploration of thermophilic microorganisms in industrial applications.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 2","pages":"30"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic insights into Thermomonas hydrothermalis: potential applications in industrial biotechnology.\",\"authors\":\"Songül Yaşar Yıldız\",\"doi\":\"10.1007/s11274-024-04240-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.106, revealing distinct metabolic pathways and stress response mechanisms. The genome annotation highlighted strain-specific variations, such as enhanced motility and chemotaxis capabilities in HOT.CON.106 and a stronger genomic stability emphasis in DSM 14834. Comparative analysis with other Thermomonas species demonstrated that T. hydrothermalis possesses a unique genomic architecture, including genes for thermostable enzymes (e.g., amylases and pullulanases) and secondary metabolite biosynthesis. These enzymes and metabolites have significant industrial potential in high-temperature processes such as bioenergy production, bioplastics synthesis, and bioremediation. The findings underscore the relative differentiation between the strains and their broader implications for sustainable biotechnology, offering a basis for further exploration of thermophilic microorganisms in industrial applications.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"41 2\",\"pages\":\"30\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04240-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04240-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genomic insights into Thermomonas hydrothermalis: potential applications in industrial biotechnology.
Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.106, revealing distinct metabolic pathways and stress response mechanisms. The genome annotation highlighted strain-specific variations, such as enhanced motility and chemotaxis capabilities in HOT.CON.106 and a stronger genomic stability emphasis in DSM 14834. Comparative analysis with other Thermomonas species demonstrated that T. hydrothermalis possesses a unique genomic architecture, including genes for thermostable enzymes (e.g., amylases and pullulanases) and secondary metabolite biosynthesis. These enzymes and metabolites have significant industrial potential in high-temperature processes such as bioenergy production, bioplastics synthesis, and bioremediation. The findings underscore the relative differentiation between the strains and their broader implications for sustainable biotechnology, offering a basis for further exploration of thermophilic microorganisms in industrial applications.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.