Francisco Mosquera-Yuqui, Daniel Ramos-Lopez, Xiaojun Hu, Yu Yang, Joshua L Mendoza, Emmanuel Asare, Joshua Habiger, Oscar P Hurtado-Gonzales, Andres S Espindola
{"title":"基于hts的三种病毒和一种类病毒多重检测的比较模板转换cDNA方法","authors":"Francisco Mosquera-Yuqui, Daniel Ramos-Lopez, Xiaojun Hu, Yu Yang, Joshua L Mendoza, Emmanuel Asare, Joshua Habiger, Oscar P Hurtado-Gonzales, Andres S Espindola","doi":"10.1038/s41598-025-86065-0","DOIUrl":null,"url":null,"abstract":"<p><p>Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S. plant quarantine programs employ PCR and high-throughput sequencing (HTS) to test imported plants for viruses and viroids of concern. Achieving a low limit of detection in any HTS protocol could be challenging. Following a template-switching cDNA amplification protocol, seven cDNA synthesis treatments were used to test simultaneously the relative abundance and coverage of the three most commonly latent RNA viruses found in apples: apple chlorotic leaf spot virus, apple stem grooving virus, and apple stem pitting virus, as well as the viroid apple hammerhead viroid. Amplified double-stranded cDNAs were subjected to library preparation using Nanopore SQK-DCS109 and Illumina Nextera XT, and sequenced with MinION and NextSeq2000, respectively. Treatments with oligo d(T)23-VN or its combination with random hexamers yielded the highest relative reads for viruses, while treatments containing the reverse primer pool produced more relative reads for AHVd. These treatments and random hexamers also generated the highest genome coverages, which were typically similar in both HTS workflows. However, relative abundances of viruses determined with SQK-DCS109 were up to 2.22-fold higher compared to Nextera XT. In contrast, Nextera XT yielded viroid reads 3.30-fold higher than SQK-DCS109. A framework of considerations for expanding this sensitive approach to other targets and crops is discussed.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1657"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724120/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comparative template-switching cDNA approach for HTS-based multiplex detection of three viruses and one viroid commonly found in apple trees.\",\"authors\":\"Francisco Mosquera-Yuqui, Daniel Ramos-Lopez, Xiaojun Hu, Yu Yang, Joshua L Mendoza, Emmanuel Asare, Joshua Habiger, Oscar P Hurtado-Gonzales, Andres S Espindola\",\"doi\":\"10.1038/s41598-025-86065-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S. plant quarantine programs employ PCR and high-throughput sequencing (HTS) to test imported plants for viruses and viroids of concern. Achieving a low limit of detection in any HTS protocol could be challenging. Following a template-switching cDNA amplification protocol, seven cDNA synthesis treatments were used to test simultaneously the relative abundance and coverage of the three most commonly latent RNA viruses found in apples: apple chlorotic leaf spot virus, apple stem grooving virus, and apple stem pitting virus, as well as the viroid apple hammerhead viroid. Amplified double-stranded cDNAs were subjected to library preparation using Nanopore SQK-DCS109 and Illumina Nextera XT, and sequenced with MinION and NextSeq2000, respectively. Treatments with oligo d(T)23-VN or its combination with random hexamers yielded the highest relative reads for viruses, while treatments containing the reverse primer pool produced more relative reads for AHVd. These treatments and random hexamers also generated the highest genome coverages, which were typically similar in both HTS workflows. However, relative abundances of viruses determined with SQK-DCS109 were up to 2.22-fold higher compared to Nextera XT. In contrast, Nextera XT yielded viroid reads 3.30-fold higher than SQK-DCS109. A framework of considerations for expanding this sensitive approach to other targets and crops is discussed.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"1657\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724120/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-86065-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86065-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A comparative template-switching cDNA approach for HTS-based multiplex detection of three viruses and one viroid commonly found in apple trees.
Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S. plant quarantine programs employ PCR and high-throughput sequencing (HTS) to test imported plants for viruses and viroids of concern. Achieving a low limit of detection in any HTS protocol could be challenging. Following a template-switching cDNA amplification protocol, seven cDNA synthesis treatments were used to test simultaneously the relative abundance and coverage of the three most commonly latent RNA viruses found in apples: apple chlorotic leaf spot virus, apple stem grooving virus, and apple stem pitting virus, as well as the viroid apple hammerhead viroid. Amplified double-stranded cDNAs were subjected to library preparation using Nanopore SQK-DCS109 and Illumina Nextera XT, and sequenced with MinION and NextSeq2000, respectively. Treatments with oligo d(T)23-VN or its combination with random hexamers yielded the highest relative reads for viruses, while treatments containing the reverse primer pool produced more relative reads for AHVd. These treatments and random hexamers also generated the highest genome coverages, which were typically similar in both HTS workflows. However, relative abundances of viruses determined with SQK-DCS109 were up to 2.22-fold higher compared to Nextera XT. In contrast, Nextera XT yielded viroid reads 3.30-fold higher than SQK-DCS109. A framework of considerations for expanding this sensitive approach to other targets and crops is discussed.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.