Rehab Ahmed, Wafa N Alghamdi, Fetun R Alharbi, Huda D Alatawi, Kawthar M Alenezi, Turki F Alanazi, Nehal M Elsherbiny
{"title":"CRISPR/Cas9系统有望治疗地中海贫血和镰状细胞病:临床试验的系统综述","authors":"Rehab Ahmed, Wafa N Alghamdi, Fetun R Alharbi, Huda D Alatawi, Kawthar M Alenezi, Turki F Alanazi, Nehal M Elsherbiny","doi":"10.1007/s12033-025-01368-x","DOIUrl":null,"url":null,"abstract":"<p><p>Clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is a new gene editing tool that represents a revolution in gene therapy. This study aimed to review the clinical trials conducted to evaluate the efficacy and safety of the CRISPR/Cas9 system in treating thalassemia and sickle cell disease (SCD). We searched relevant literature using \"CRISPR Cas\", \"thalassemia\", \"sickle cell\" and \"clinical trial\" as subject terms in PubMed, Cochrane, Web of Science, and Google Scholar up to December 3rd, 2023. Following the PIO format (Patients, Intervention, Outcome), PRISMA guidelines were followed in the study selection, data extraction, and quality assessment processes. Out of 110 publications, 6 studies met our eligibility criteria with a total of 115 patients involved. CRISPR/Cas9 system was used to disrupt BCL11A gene enhancer in 4 studies and to disrupt γ-globin gene promoters in 2 studies. Patients demonstrated significant activation of fetal hemoglobin, elevated total hemoglobin, transfusion independence in thalassemia, and repression of vaso-occlusive episodes in SCD. Using CRISPR/Cas9 system to directly disrupt genes provides a safe and potential one-time functional cure for thalassemia and SCD, suggesting CRISPR/Cas9 as a potential therapeutic tool for the treatment of inherited hematological disorders.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 System as a Promising Therapy in Thalassemia and Sickle Cell Disease: A Systematic Review of Clinical Trials.\",\"authors\":\"Rehab Ahmed, Wafa N Alghamdi, Fetun R Alharbi, Huda D Alatawi, Kawthar M Alenezi, Turki F Alanazi, Nehal M Elsherbiny\",\"doi\":\"10.1007/s12033-025-01368-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is a new gene editing tool that represents a revolution in gene therapy. This study aimed to review the clinical trials conducted to evaluate the efficacy and safety of the CRISPR/Cas9 system in treating thalassemia and sickle cell disease (SCD). We searched relevant literature using \\\"CRISPR Cas\\\", \\\"thalassemia\\\", \\\"sickle cell\\\" and \\\"clinical trial\\\" as subject terms in PubMed, Cochrane, Web of Science, and Google Scholar up to December 3rd, 2023. Following the PIO format (Patients, Intervention, Outcome), PRISMA guidelines were followed in the study selection, data extraction, and quality assessment processes. Out of 110 publications, 6 studies met our eligibility criteria with a total of 115 patients involved. CRISPR/Cas9 system was used to disrupt BCL11A gene enhancer in 4 studies and to disrupt γ-globin gene promoters in 2 studies. Patients demonstrated significant activation of fetal hemoglobin, elevated total hemoglobin, transfusion independence in thalassemia, and repression of vaso-occlusive episodes in SCD. Using CRISPR/Cas9 system to directly disrupt genes provides a safe and potential one-time functional cure for thalassemia and SCD, suggesting CRISPR/Cas9 as a potential therapeutic tool for the treatment of inherited hematological disorders.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-025-01368-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01368-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
聚集的、规则间隔的短回文重复序列(CRISPR)-CRISPR相关蛋白(Cas)系统是一种新的基因编辑工具,代表了基因治疗的一场革命。本研究旨在回顾为评估CRISPR/Cas9系统治疗地中海贫血和镰状细胞病(SCD)的有效性和安全性而进行的临床试验。截至2023年12月3日,我们在PubMed、Cochrane、Web of Science和谷歌Scholar中以“CRISPR Cas”、“地中海贫血”、“镰状细胞”和“临床试验”为主题检索相关文献。遵循PIO格式(患者、干预、结果),在研究选择、数据提取和质量评估过程中遵循PRISMA指南。在110份出版物中,6项研究符合我们的资格标准,共涉及115名患者。使用CRISPR/Cas9系统破坏BCL11A基因增强子的研究有4项,破坏γ-珠蛋白基因启动子的研究有2项。患者表现出明显的胎儿血红蛋白激活,总血红蛋白升高,地中海贫血患者输血不依赖,SCD患者血管闭塞发作抑制。利用CRISPR/Cas9系统直接破坏基因为地中海贫血和SCD提供了一种安全且潜在的一次性功能性治愈,提示CRISPR/Cas9是治疗遗传性血液病的潜在治疗工具。
CRISPR/Cas9 System as a Promising Therapy in Thalassemia and Sickle Cell Disease: A Systematic Review of Clinical Trials.
Clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is a new gene editing tool that represents a revolution in gene therapy. This study aimed to review the clinical trials conducted to evaluate the efficacy and safety of the CRISPR/Cas9 system in treating thalassemia and sickle cell disease (SCD). We searched relevant literature using "CRISPR Cas", "thalassemia", "sickle cell" and "clinical trial" as subject terms in PubMed, Cochrane, Web of Science, and Google Scholar up to December 3rd, 2023. Following the PIO format (Patients, Intervention, Outcome), PRISMA guidelines were followed in the study selection, data extraction, and quality assessment processes. Out of 110 publications, 6 studies met our eligibility criteria with a total of 115 patients involved. CRISPR/Cas9 system was used to disrupt BCL11A gene enhancer in 4 studies and to disrupt γ-globin gene promoters in 2 studies. Patients demonstrated significant activation of fetal hemoglobin, elevated total hemoglobin, transfusion independence in thalassemia, and repression of vaso-occlusive episodes in SCD. Using CRISPR/Cas9 system to directly disrupt genes provides a safe and potential one-time functional cure for thalassemia and SCD, suggesting CRISPR/Cas9 as a potential therapeutic tool for the treatment of inherited hematological disorders.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.