{"title":"桥接膳食多糖和肠道微生物群:如何实现肠道健康促进的精确调节。","authors":"Xihao Sun, Zhangming Pei, Hongchao Wang, Jianxin Zhao, Wei Chen, Wenwei Lu","doi":"10.1016/j.micres.2025.128046","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary polysaccharides function not only as indispensable nutrients and energy sources for the host organism but also as critical substrates for the gut microbiota. Gut microorganisms possess the ability to selectively degrade and metabolize specific dietary polysaccharides, thus fostering their proliferation and yielding crucial bioactive metabolites that potentially influence host metabolic and immune pathways. Dysbiosis of the gut microbiota has been extensively documented to be closely linked with the onset and progression of various diseases; in this regard, the precision modulation strategy of the gut microbiome via dietary polysaccharides holds substantial potential to enhance human health. Here, we delve into the therapeutic potential of dietary polysaccharides for the precision modulation of specific gut microorganisms via dietary interventions, with particular emphasis on their implications for the prevention and management of metabolic and inflammatory disorders. Given the complexity of the human gut microbiome and the varying degrees to which different bacterial members utilize carbohydrates, we conduct an in-depth analysis of the differential utilization of dietary polysaccharides by key gut microbiome, with particular emphasis on the role of carbohydrate-active enzymes in these processes. Furthermore, we elucidate the pivotal role of carbohydrate utilization within microbial cross-feeding networks and its significance in maintaining gut homeostasis. In summary, this review investigates the precision modulation of gut microbiota through dietary polysaccharides, with the aim of establishing a theoretical foundation for the development of personalized nutritional interventions. These strategies hold substantial potential for enhancing human health and offer valuable opportunities for the prevention and treatment of microbiota-associated diseases.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128046"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging dietary polysaccharides and gut microbiome: How to achieve precision modulation for gut health promotion.\",\"authors\":\"Xihao Sun, Zhangming Pei, Hongchao Wang, Jianxin Zhao, Wei Chen, Wenwei Lu\",\"doi\":\"10.1016/j.micres.2025.128046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dietary polysaccharides function not only as indispensable nutrients and energy sources for the host organism but also as critical substrates for the gut microbiota. Gut microorganisms possess the ability to selectively degrade and metabolize specific dietary polysaccharides, thus fostering their proliferation and yielding crucial bioactive metabolites that potentially influence host metabolic and immune pathways. Dysbiosis of the gut microbiota has been extensively documented to be closely linked with the onset and progression of various diseases; in this regard, the precision modulation strategy of the gut microbiome via dietary polysaccharides holds substantial potential to enhance human health. Here, we delve into the therapeutic potential of dietary polysaccharides for the precision modulation of specific gut microorganisms via dietary interventions, with particular emphasis on their implications for the prevention and management of metabolic and inflammatory disorders. Given the complexity of the human gut microbiome and the varying degrees to which different bacterial members utilize carbohydrates, we conduct an in-depth analysis of the differential utilization of dietary polysaccharides by key gut microbiome, with particular emphasis on the role of carbohydrate-active enzymes in these processes. Furthermore, we elucidate the pivotal role of carbohydrate utilization within microbial cross-feeding networks and its significance in maintaining gut homeostasis. In summary, this review investigates the precision modulation of gut microbiota through dietary polysaccharides, with the aim of establishing a theoretical foundation for the development of personalized nutritional interventions. These strategies hold substantial potential for enhancing human health and offer valuable opportunities for the prevention and treatment of microbiota-associated diseases.</p>\",\"PeriodicalId\":18564,\"journal\":{\"name\":\"Microbiological research\",\"volume\":\"292 \",\"pages\":\"128046\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.micres.2025.128046\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2025.128046","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Bridging dietary polysaccharides and gut microbiome: How to achieve precision modulation for gut health promotion.
Dietary polysaccharides function not only as indispensable nutrients and energy sources for the host organism but also as critical substrates for the gut microbiota. Gut microorganisms possess the ability to selectively degrade and metabolize specific dietary polysaccharides, thus fostering their proliferation and yielding crucial bioactive metabolites that potentially influence host metabolic and immune pathways. Dysbiosis of the gut microbiota has been extensively documented to be closely linked with the onset and progression of various diseases; in this regard, the precision modulation strategy of the gut microbiome via dietary polysaccharides holds substantial potential to enhance human health. Here, we delve into the therapeutic potential of dietary polysaccharides for the precision modulation of specific gut microorganisms via dietary interventions, with particular emphasis on their implications for the prevention and management of metabolic and inflammatory disorders. Given the complexity of the human gut microbiome and the varying degrees to which different bacterial members utilize carbohydrates, we conduct an in-depth analysis of the differential utilization of dietary polysaccharides by key gut microbiome, with particular emphasis on the role of carbohydrate-active enzymes in these processes. Furthermore, we elucidate the pivotal role of carbohydrate utilization within microbial cross-feeding networks and its significance in maintaining gut homeostasis. In summary, this review investigates the precision modulation of gut microbiota through dietary polysaccharides, with the aim of establishing a theoretical foundation for the development of personalized nutritional interventions. These strategies hold substantial potential for enhancing human health and offer valuable opportunities for the prevention and treatment of microbiota-associated diseases.
期刊介绍:
Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.