通过基因组挖掘、全球调控因子引入和分子网络,发现链霉菌N50中激活抗氧化剂NRF2-ARE通路的15- deoxynaphycins。

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Min-Seon Kim, Baskar Selvaraj, Hee-Tae Yeo, Jun-Su Park, Jae Wook Lee, Jin-Soo Park
{"title":"通过基因组挖掘、全球调控因子引入和分子网络,发现链霉菌N50中激活抗氧化剂NRF2-ARE通路的15- deoxynaphycins。","authors":"Min-Seon Kim, Baskar Selvaraj, Hee-Tae Yeo, Jun-Su Park, Jae Wook Lee, Jin-Soo Park","doi":"10.1186/s12934-024-02641-5","DOIUrl":null,"url":null,"abstract":"<p><p>Genome mining is a promising avenue for expanding the repertoire of microbial natural products, which are important for drug development. This approach involves predicting genetically encoded small molecules by examining bacterial genomes via accumulated knowledge of microbial biosynthesis. However, it is also important that the microbes produce the predicted molecule in practice. Here, we introduce an endophytic Streptomyces sp. N50, which was isolated from the medicinal plant Selaginella tamariscina. Upon sequencing its entire genome, 33 biosynthetic gene clusters (BGCs) were identified in a chromosome and a megaplasmid. Subsequent genome mining revealed that the new 15-deoxynaphthomycin could be produced due to the presence of an enoyl reductase domain, which is absent in the known BGC of naphthomycin, a type of ansamycin antibiotics. In addition, the engineered strain with the introduction of the global regulatory gene afsR2 into N50 successfully produced 15-deoxynaphthomycins. Furthermore, molecular network analysis via MS/MS selectively confirmed the presence of additional sulfur-containing 15-deoxynaphthomycin congeners. Eventually, six new 15-deoxynaphthomycins were isolated and elucidated from the engineered strain N50. This family of compounds is known to exhibit various biological activities. Also, the presence of quinone moieties in these compounds, which are known to activate NRF2, they were tested for their ability to activate NRF2. Among the new compounds, three (1, 5, and 6) activated the antioxidant NRF2-ARE signaling pathway. Treatment with these compounds significantly elevated NRF2 levels in HepG2 cells and further induced the expression of NRF2 target genes associated with the antioxidant response. This study suggests that the combination of genome mining, gene engineering and molecular networking is helpful for generating new small molecules as pharmaceutical candidates from microorganisms.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"14"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of 15-deoxynaphthomycins activating the antioxidant NRF2-ARE pathway from Streptomyces sp. N50 via genome mining, global regulator introduction, and molecular networking.\",\"authors\":\"Min-Seon Kim, Baskar Selvaraj, Hee-Tae Yeo, Jun-Su Park, Jae Wook Lee, Jin-Soo Park\",\"doi\":\"10.1186/s12934-024-02641-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome mining is a promising avenue for expanding the repertoire of microbial natural products, which are important for drug development. This approach involves predicting genetically encoded small molecules by examining bacterial genomes via accumulated knowledge of microbial biosynthesis. However, it is also important that the microbes produce the predicted molecule in practice. Here, we introduce an endophytic Streptomyces sp. N50, which was isolated from the medicinal plant Selaginella tamariscina. Upon sequencing its entire genome, 33 biosynthetic gene clusters (BGCs) were identified in a chromosome and a megaplasmid. Subsequent genome mining revealed that the new 15-deoxynaphthomycin could be produced due to the presence of an enoyl reductase domain, which is absent in the known BGC of naphthomycin, a type of ansamycin antibiotics. In addition, the engineered strain with the introduction of the global regulatory gene afsR2 into N50 successfully produced 15-deoxynaphthomycins. Furthermore, molecular network analysis via MS/MS selectively confirmed the presence of additional sulfur-containing 15-deoxynaphthomycin congeners. Eventually, six new 15-deoxynaphthomycins were isolated and elucidated from the engineered strain N50. This family of compounds is known to exhibit various biological activities. Also, the presence of quinone moieties in these compounds, which are known to activate NRF2, they were tested for their ability to activate NRF2. Among the new compounds, three (1, 5, and 6) activated the antioxidant NRF2-ARE signaling pathway. Treatment with these compounds significantly elevated NRF2 levels in HepG2 cells and further induced the expression of NRF2 target genes associated with the antioxidant response. This study suggests that the combination of genome mining, gene engineering and molecular networking is helpful for generating new small molecules as pharmaceutical candidates from microorganisms.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"24 1\",\"pages\":\"14\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-024-02641-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02641-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因组挖掘是一个很有前途的途径,以扩大曲目的微生物天然产物,这是重要的药物开发。这种方法包括通过积累的微生物生物合成知识来检测细菌基因组,从而预测遗传编码的小分子。然而,微生物在实践中产生预测的分子也很重要。本文介绍了从药用植物卷柏(Selaginella tamariscina)中分离得到的一株内生链霉菌(Streptomyces sp. N50)。在对其全基因组测序后,在染色体和巨质粒中鉴定出33个生物合成基因簇(BGCs)。随后的基因组挖掘发现,新的15-脱氧萘霉素可能是由于一个烯酰还原酶结构域的存在而产生的,这在萘霉素的BGC中是不存在的,萘霉素是一种ansamycin抗生素。此外,将全球调控基因afsR2引入N50的工程菌株成功地产生了15-脱氧萘霉素。此外,分子网络分析通过MS/MS选择性地证实了其他含硫15-脱氧霉素同系物的存在。最终,从工程菌株N50中分离并鉴定出6个新的15-脱氧萘霉素。已知这类化合物具有多种生物活性。此外,这些化合物中醌部分的存在,已知可以激活NRF2,他们被测试了他们激活NRF2的能力。在这些新化合物中,有3个(1、5和6)激活了抗氧化剂NRF2-ARE信号通路。这些化合物显著提高了HepG2细胞中的NRF2水平,并进一步诱导了NRF2靶基因的表达。该研究表明,基因组挖掘、基因工程和分子网络的结合有助于从微生物中产生新的小分子候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovery of 15-deoxynaphthomycins activating the antioxidant NRF2-ARE pathway from Streptomyces sp. N50 via genome mining, global regulator introduction, and molecular networking.

Genome mining is a promising avenue for expanding the repertoire of microbial natural products, which are important for drug development. This approach involves predicting genetically encoded small molecules by examining bacterial genomes via accumulated knowledge of microbial biosynthesis. However, it is also important that the microbes produce the predicted molecule in practice. Here, we introduce an endophytic Streptomyces sp. N50, which was isolated from the medicinal plant Selaginella tamariscina. Upon sequencing its entire genome, 33 biosynthetic gene clusters (BGCs) were identified in a chromosome and a megaplasmid. Subsequent genome mining revealed that the new 15-deoxynaphthomycin could be produced due to the presence of an enoyl reductase domain, which is absent in the known BGC of naphthomycin, a type of ansamycin antibiotics. In addition, the engineered strain with the introduction of the global regulatory gene afsR2 into N50 successfully produced 15-deoxynaphthomycins. Furthermore, molecular network analysis via MS/MS selectively confirmed the presence of additional sulfur-containing 15-deoxynaphthomycin congeners. Eventually, six new 15-deoxynaphthomycins were isolated and elucidated from the engineered strain N50. This family of compounds is known to exhibit various biological activities. Also, the presence of quinone moieties in these compounds, which are known to activate NRF2, they were tested for their ability to activate NRF2. Among the new compounds, three (1, 5, and 6) activated the antioxidant NRF2-ARE signaling pathway. Treatment with these compounds significantly elevated NRF2 levels in HepG2 cells and further induced the expression of NRF2 target genes associated with the antioxidant response. This study suggests that the combination of genome mining, gene engineering and molecular networking is helpful for generating new small molecules as pharmaceutical candidates from microorganisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信