Qing Wang, Da-Ru Wang, Xin Liu, Guo-Lin Chen, He-Dan Li, Wen-Long Ji, Man-Shu Qu, Rui Yang, Chun-Xiang You
{"title":"三聚体四肽重复蛋白TPR16正调控苹果盐胁迫。","authors":"Qing Wang, Da-Ru Wang, Xin Liu, Guo-Lin Chen, He-Dan Li, Wen-Long Ji, Man-Shu Qu, Rui Yang, Chun-Xiang You","doi":"10.1016/j.jplph.2024.154415","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are vulnerable to various abiotic stresses in the natural growing environment, among which salt stress can seriously affect plant growth, development and yield. Protein families containing trimeric tetrapeptide repeat sequences have a crucial function in plant resilience to non-living factors and participate in multiple aspects of plant growth and development. For this investigation, we acquired the apple MdTPR16 gene. The research demonstrated that ectopic expression of MdTPR16 in Arabidopsis resulted in increased resistance to salt stress. This was observed by a drop in malondialdehyde (MDA) levels and a reduction in the buildup of reactive oxygen species (ROS) under salt stress conditions. Meanwhile, apple calli, apple seedlings and apple rooting seedlings overexpressing MdTPR16 showed reduced sensitivity to salt stress. The results indicate that MdTPR16 has a critical positive regulatory function under salt stress, which may lay the foundation for a deeper understanding of the molecular pathways of salt tolerance in apple.</p>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"305 ","pages":"154415"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trimeric tetrapeptide repeat protein TPR16 positively regulates salt stress in apple.\",\"authors\":\"Qing Wang, Da-Ru Wang, Xin Liu, Guo-Lin Chen, He-Dan Li, Wen-Long Ji, Man-Shu Qu, Rui Yang, Chun-Xiang You\",\"doi\":\"10.1016/j.jplph.2024.154415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants are vulnerable to various abiotic stresses in the natural growing environment, among which salt stress can seriously affect plant growth, development and yield. Protein families containing trimeric tetrapeptide repeat sequences have a crucial function in plant resilience to non-living factors and participate in multiple aspects of plant growth and development. For this investigation, we acquired the apple MdTPR16 gene. The research demonstrated that ectopic expression of MdTPR16 in Arabidopsis resulted in increased resistance to salt stress. This was observed by a drop in malondialdehyde (MDA) levels and a reduction in the buildup of reactive oxygen species (ROS) under salt stress conditions. Meanwhile, apple calli, apple seedlings and apple rooting seedlings overexpressing MdTPR16 showed reduced sensitivity to salt stress. The results indicate that MdTPR16 has a critical positive regulatory function under salt stress, which may lay the foundation for a deeper understanding of the molecular pathways of salt tolerance in apple.</p>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"305 \",\"pages\":\"154415\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jplph.2024.154415\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jplph.2024.154415","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Trimeric tetrapeptide repeat protein TPR16 positively regulates salt stress in apple.
Plants are vulnerable to various abiotic stresses in the natural growing environment, among which salt stress can seriously affect plant growth, development and yield. Protein families containing trimeric tetrapeptide repeat sequences have a crucial function in plant resilience to non-living factors and participate in multiple aspects of plant growth and development. For this investigation, we acquired the apple MdTPR16 gene. The research demonstrated that ectopic expression of MdTPR16 in Arabidopsis resulted in increased resistance to salt stress. This was observed by a drop in malondialdehyde (MDA) levels and a reduction in the buildup of reactive oxygen species (ROS) under salt stress conditions. Meanwhile, apple calli, apple seedlings and apple rooting seedlings overexpressing MdTPR16 showed reduced sensitivity to salt stress. The results indicate that MdTPR16 has a critical positive regulatory function under salt stress, which may lay the foundation for a deeper understanding of the molecular pathways of salt tolerance in apple.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.