面向动物福利的协作式人工智能开发。

IF 1.6 2区 农林科学 Q2 VETERINARY SCIENCES
Jennifer J Sun
{"title":"面向动物福利的协作式人工智能开发。","authors":"Jennifer J Sun","doi":"10.2460/javma.24.10.0650","DOIUrl":null,"url":null,"abstract":"<p><p>This review focuses on opportunities and challenges of future AI developments in veterinary medicine, from the perspective of computer science researchers in developing AI systems for animal behavior analysis. We examine the paradigms of supervised learning, self-supervised learning, and foundation models, highlighting their applications and limitations in automating animal behavior analysis. These emerging technologies present future challenges in data, modeling, and evaluation in veterinary medicine. To address this, we advocate for a collaborative approach that integrates the expertise of AI researchers, veterinary professionals, and other stakeholders to navigate the evolving landscape of AI in veterinary medicine. Through cross-domain dialogue and an emphasis on human and animal well-being, we can shape AI development to advance veterinary practice for the benefit of all.</p>","PeriodicalId":14658,"journal":{"name":"Javma-journal of The American Veterinary Medical Association","volume":" ","pages":"1-8"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward collaborative artificial intelligence development for animal well-being.\",\"authors\":\"Jennifer J Sun\",\"doi\":\"10.2460/javma.24.10.0650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review focuses on opportunities and challenges of future AI developments in veterinary medicine, from the perspective of computer science researchers in developing AI systems for animal behavior analysis. We examine the paradigms of supervised learning, self-supervised learning, and foundation models, highlighting their applications and limitations in automating animal behavior analysis. These emerging technologies present future challenges in data, modeling, and evaluation in veterinary medicine. To address this, we advocate for a collaborative approach that integrates the expertise of AI researchers, veterinary professionals, and other stakeholders to navigate the evolving landscape of AI in veterinary medicine. Through cross-domain dialogue and an emphasis on human and animal well-being, we can shape AI development to advance veterinary practice for the benefit of all.</p>\",\"PeriodicalId\":14658,\"journal\":{\"name\":\"Javma-journal of The American Veterinary Medical Association\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Javma-journal of The American Veterinary Medical Association\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2460/javma.24.10.0650\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Javma-journal of The American Veterinary Medical Association","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2460/javma.24.10.0650","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文从计算机科学研究人员开发用于动物行为分析的人工智能系统的角度,重点讨论了兽医领域未来人工智能发展的机遇和挑战。我们研究了监督学习、自监督学习和基础模型的范例,重点介绍了它们在自动化动物行为分析中的应用和局限性。这些新兴技术在兽医学的数据、建模和评估方面提出了未来的挑战。为了解决这一问题,我们提倡采用一种协作方法,整合人工智能研究人员、兽医专业人员和其他利益相关者的专业知识,以驾驭兽医领域人工智能的不断发展。通过跨领域对话和对人类和动物福祉的重视,我们可以塑造人工智能的发展,以促进兽医实践,造福所有人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward collaborative artificial intelligence development for animal well-being.

This review focuses on opportunities and challenges of future AI developments in veterinary medicine, from the perspective of computer science researchers in developing AI systems for animal behavior analysis. We examine the paradigms of supervised learning, self-supervised learning, and foundation models, highlighting their applications and limitations in automating animal behavior analysis. These emerging technologies present future challenges in data, modeling, and evaluation in veterinary medicine. To address this, we advocate for a collaborative approach that integrates the expertise of AI researchers, veterinary professionals, and other stakeholders to navigate the evolving landscape of AI in veterinary medicine. Through cross-domain dialogue and an emphasis on human and animal well-being, we can shape AI development to advance veterinary practice for the benefit of all.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
15.80%
发文量
539
审稿时长
6-16 weeks
期刊介绍: Published twice monthly, this peer-reviewed, general scientific journal provides reports of clinical research, feature articles and regular columns of interest to veterinarians in private and public practice. The News and Classified Ad sections are posted online 10 days to two weeks before they are delivered in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信