动态网络竞争中有限资源的平衡。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Christophe Guérin, Anne-Betty N'Diaye, Laurène Gressin, Alex Mogilner, Manuel Théry, Laurent Blanchoin, Alexandra Colin
{"title":"动态网络竞争中有限资源的平衡。","authors":"Christophe Guérin, Anne-Betty N'Diaye, Laurène Gressin, Alex Mogilner, Manuel Théry, Laurent Blanchoin, Alexandra Colin","doi":"10.1016/j.cub.2024.11.067","DOIUrl":null,"url":null,"abstract":"<p><p>In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources. Moreover, the coexistence of networks with various strengths is key to cell adaptation to external changes. However, a comprehensive view of how these networks coexist in this competitive environment, where resources are limited, is still lacking. To address this question, we used a reconstituted system, in closed microwells, consisting of beads propelled by actin polymerization or micropatterns functionalized with lipids capable of initiating polymerization close to a membrane. This system enabled us to build dynamic actin architectures, competing for a limited pool of proteins, over a period of hours. We demonstrated the importance of protein turnover for the coexistence of actin networks, showing that it ensures resource distribution between weak and strong networks. However, when competition becomes too intense, turnover alone is insufficient, leading to a selection process that favors the strongest networks. Consequently, we emphasize the importance of competition strength, which is defined by the turnover rate, the amount of available protein, and the number of competing structures. More generally, this work illustrates how turnover allows biological populations with various competition strengths to coexist despite resource constraints.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing limited resources in actin network competition.\",\"authors\":\"Christophe Guérin, Anne-Betty N'Diaye, Laurène Gressin, Alex Mogilner, Manuel Théry, Laurent Blanchoin, Alexandra Colin\",\"doi\":\"10.1016/j.cub.2024.11.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources. Moreover, the coexistence of networks with various strengths is key to cell adaptation to external changes. However, a comprehensive view of how these networks coexist in this competitive environment, where resources are limited, is still lacking. To address this question, we used a reconstituted system, in closed microwells, consisting of beads propelled by actin polymerization or micropatterns functionalized with lipids capable of initiating polymerization close to a membrane. This system enabled us to build dynamic actin architectures, competing for a limited pool of proteins, over a period of hours. We demonstrated the importance of protein turnover for the coexistence of actin networks, showing that it ensures resource distribution between weak and strong networks. However, when competition becomes too intense, turnover alone is insufficient, leading to a selection process that favors the strongest networks. Consequently, we emphasize the importance of competition strength, which is defined by the turnover rate, the amount of available protein, and the number of competing structures. More generally, this work illustrates how turnover allows biological populations with various competition strengths to coexist despite resource constraints.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.11.067\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.067","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在细胞中,多个肌动蛋白网络以动态的方式共存。这些网络竞争肌动蛋白单体和肌动蛋白结合蛋白的公共池。有趣的是,尽管资源竞争激烈,但所有这些网络都能共存。此外,多种优势网络的共存是细胞适应外部变化的关键。然而,对这些网络如何在资源有限的竞争环境中共存的全面看法仍然缺乏。为了解决这个问题,我们在封闭的微孔中使用了一个重组的系统,由肌动蛋白聚合推动的微珠或脂质功能化的微图案组成,这些微图案能够在靠近膜的地方引发聚合。这个系统使我们能够建立动态的肌动蛋白结构,在一段时间内竞争有限的蛋白质池。我们证明了蛋白质周转对肌动蛋白网络共存的重要性,表明它确保了弱网络和强网络之间的资源分配。然而,当竞争变得过于激烈时,仅凭人员流动率是不够的,这导致了一个有利于最强网络的选择过程。因此,我们强调竞争强度的重要性,这是由周转率、可用蛋白质的数量和竞争结构的数量来定义的。更一般地说,这项工作说明了在资源限制的情况下,更替如何使具有各种竞争优势的生物种群共存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balancing limited resources in actin network competition.

In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources. Moreover, the coexistence of networks with various strengths is key to cell adaptation to external changes. However, a comprehensive view of how these networks coexist in this competitive environment, where resources are limited, is still lacking. To address this question, we used a reconstituted system, in closed microwells, consisting of beads propelled by actin polymerization or micropatterns functionalized with lipids capable of initiating polymerization close to a membrane. This system enabled us to build dynamic actin architectures, competing for a limited pool of proteins, over a period of hours. We demonstrated the importance of protein turnover for the coexistence of actin networks, showing that it ensures resource distribution between weak and strong networks. However, when competition becomes too intense, turnover alone is insufficient, leading to a selection process that favors the strongest networks. Consequently, we emphasize the importance of competition strength, which is defined by the turnover rate, the amount of available protein, and the number of competing structures. More generally, this work illustrates how turnover allows biological populations with various competition strengths to coexist despite resource constraints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信