{"title":"聚乳酸/聚3-羟基丁酸-co-4-羟基丁酸共混物与环氧大豆油交联诱导的相容性和韧性增强。","authors":"Zhixian Qin, Yulin He, Jia Tan, Chen Zhou, Zhihui Xie, Kefeng Xie, Yuejun Liu","doi":"10.1016/j.ijbiomac.2025.139689","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactide (PLA) is inherently brittle and lacks ductility, which greatly restricts its range of applications. In order to address these issues, we blended PLA with biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), and introduced epoxidized soybean oil (ESBO) as a reactive modifier to enhance the properties of the PLA/P(3HB-co-4HB) blends. Furthermore, we used theoretical calculations, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Soxhlet extraction, differential scanning calorimetry (DSC), polarising optical microscopy (POM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical testing to investigate the compatibility, crystallization behavior, microstructure, thermal and mechanical properties of the PLA/P(3HB-co-4HB)/ESBO blends. The mechanisms underlying these properties were analyzed in detail. ESBO was found to form cross-linking grafts between PLA and P(3HB-co-4HB), strengthening interfacial bonding and thereby enhancing compatibility. The in situ formation of graft copolymers resulted in finer, more uniform dispersion of P(3HB-co-4HB) and ESBO droplets within the PLA matrix, further improving interfacial adhesion and overall material compatibility. With the addition of 5 wt% ESBO, the tensile strain at break of PLA/P(3HB-co-4HB)/ESBO films increased from 114.6 % to 453.3 %, while the notched impact strength improved from 3.75 kJ∙m<sup>-2</sup> to 8.75 kJ∙m<sup>-2</sup>, compared to PLA/P(3HB-co-4HB) films. However, excessive ESBO slightly decreases the mechanical performance of the material.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139689"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crosslinking-induced compatibility and toughness enhancement in poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends with epoxidized soybean oil.\",\"authors\":\"Zhixian Qin, Yulin He, Jia Tan, Chen Zhou, Zhihui Xie, Kefeng Xie, Yuejun Liu\",\"doi\":\"10.1016/j.ijbiomac.2025.139689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polylactide (PLA) is inherently brittle and lacks ductility, which greatly restricts its range of applications. In order to address these issues, we blended PLA with biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), and introduced epoxidized soybean oil (ESBO) as a reactive modifier to enhance the properties of the PLA/P(3HB-co-4HB) blends. Furthermore, we used theoretical calculations, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Soxhlet extraction, differential scanning calorimetry (DSC), polarising optical microscopy (POM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical testing to investigate the compatibility, crystallization behavior, microstructure, thermal and mechanical properties of the PLA/P(3HB-co-4HB)/ESBO blends. The mechanisms underlying these properties were analyzed in detail. ESBO was found to form cross-linking grafts between PLA and P(3HB-co-4HB), strengthening interfacial bonding and thereby enhancing compatibility. The in situ formation of graft copolymers resulted in finer, more uniform dispersion of P(3HB-co-4HB) and ESBO droplets within the PLA matrix, further improving interfacial adhesion and overall material compatibility. With the addition of 5 wt% ESBO, the tensile strain at break of PLA/P(3HB-co-4HB)/ESBO films increased from 114.6 % to 453.3 %, while the notched impact strength improved from 3.75 kJ∙m<sup>-2</sup> to 8.75 kJ∙m<sup>-2</sup>, compared to PLA/P(3HB-co-4HB) films. However, excessive ESBO slightly decreases the mechanical performance of the material.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"139689\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.139689\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139689","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Crosslinking-induced compatibility and toughness enhancement in poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends with epoxidized soybean oil.
Polylactide (PLA) is inherently brittle and lacks ductility, which greatly restricts its range of applications. In order to address these issues, we blended PLA with biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), and introduced epoxidized soybean oil (ESBO) as a reactive modifier to enhance the properties of the PLA/P(3HB-co-4HB) blends. Furthermore, we used theoretical calculations, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Soxhlet extraction, differential scanning calorimetry (DSC), polarising optical microscopy (POM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical testing to investigate the compatibility, crystallization behavior, microstructure, thermal and mechanical properties of the PLA/P(3HB-co-4HB)/ESBO blends. The mechanisms underlying these properties were analyzed in detail. ESBO was found to form cross-linking grafts between PLA and P(3HB-co-4HB), strengthening interfacial bonding and thereby enhancing compatibility. The in situ formation of graft copolymers resulted in finer, more uniform dispersion of P(3HB-co-4HB) and ESBO droplets within the PLA matrix, further improving interfacial adhesion and overall material compatibility. With the addition of 5 wt% ESBO, the tensile strain at break of PLA/P(3HB-co-4HB)/ESBO films increased from 114.6 % to 453.3 %, while the notched impact strength improved from 3.75 kJ∙m-2 to 8.75 kJ∙m-2, compared to PLA/P(3HB-co-4HB) films. However, excessive ESBO slightly decreases the mechanical performance of the material.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.