{"title":"高硒暴露与血清脂质代谢的调节有关。","authors":"Yong Tan, Zixiong Zhang, Jinru Yang, Li Wang, Guogen Sun, Yishan Guo, Ying Xiang, Yi Zou, Xiusheng Song, Minglong Li, Chuying Huang","doi":"10.1016/j.ecoenv.2025.117677","DOIUrl":null,"url":null,"abstract":"<p><p>At present, there is no consensus on the relationship between selenium (Se) exposure and human serum lipid metabolism. The etiological role of high-Se exposure in lipid markers, dyslipidemia, and nonalcoholic fatty liver (NAFLD) remains unclear. We used serum untargeted metabolomics analysis to evaluate whether high-Se exposure is cross-sectionally associated with lipid metabolism in adults from high-Se exposure area (n = 112) and control area (n = 101) in Hubei Province, China. An untargeted liquid chromatography/mass spectrometry (LC/MS)-based metabolomic analysis identified 144 differential pathways and yielded 204 differentially abundant metabolites, including 32 lipid metabolites associated with lipids profiles. To further explore the correlation between Se exposure and serum lipid metabolism, we measured serum levels of lipid profiles among all the people, including serum cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein B (APOB). The average serum Se level of the high-Se exposure group was 537.18 μg/L, significantly higher than 72.98 μg/L in the control group (p < 0.0001). The measurement levels of serum TG, LDL-C, HDL-C, and APOB in the high-Se exposure group were 1.03 (0.76, 1.34) mmol/L, 2.25 ± 0.48 mmol/L, 1.12 ± 0.24 mmol/L, and 0.77 ± 0.15 g/L, respectively, while the control group were 1.13 (0.84, 1.80) mmol/L, 2.56 ± 0.61 mmol/L, 1.02 ± 0.22 mmol/L, and 0.83 ± 0.16 g/L, respectively (all p values <0.05). Correlation analysis showed a significant negative correlation between serum Se and CHOL (r = -0.201, p < 0.01), serum Se is also associated with metabolomics markers, the negative correlation includes glyceric acid and ect., the positive correlation includes phosphorylcholine and ect. Our study suggests that high-Se exposure is negatively associated with serum lipid profiles and decreases the risk of high-TC and HDL-C dyslipidemia.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"289 ","pages":"117677"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-selenium exposure is associated with modulation of serum lipid metabolism.\",\"authors\":\"Yong Tan, Zixiong Zhang, Jinru Yang, Li Wang, Guogen Sun, Yishan Guo, Ying Xiang, Yi Zou, Xiusheng Song, Minglong Li, Chuying Huang\",\"doi\":\"10.1016/j.ecoenv.2025.117677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>At present, there is no consensus on the relationship between selenium (Se) exposure and human serum lipid metabolism. The etiological role of high-Se exposure in lipid markers, dyslipidemia, and nonalcoholic fatty liver (NAFLD) remains unclear. We used serum untargeted metabolomics analysis to evaluate whether high-Se exposure is cross-sectionally associated with lipid metabolism in adults from high-Se exposure area (n = 112) and control area (n = 101) in Hubei Province, China. An untargeted liquid chromatography/mass spectrometry (LC/MS)-based metabolomic analysis identified 144 differential pathways and yielded 204 differentially abundant metabolites, including 32 lipid metabolites associated with lipids profiles. To further explore the correlation between Se exposure and serum lipid metabolism, we measured serum levels of lipid profiles among all the people, including serum cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein B (APOB). The average serum Se level of the high-Se exposure group was 537.18 μg/L, significantly higher than 72.98 μg/L in the control group (p < 0.0001). The measurement levels of serum TG, LDL-C, HDL-C, and APOB in the high-Se exposure group were 1.03 (0.76, 1.34) mmol/L, 2.25 ± 0.48 mmol/L, 1.12 ± 0.24 mmol/L, and 0.77 ± 0.15 g/L, respectively, while the control group were 1.13 (0.84, 1.80) mmol/L, 2.56 ± 0.61 mmol/L, 1.02 ± 0.22 mmol/L, and 0.83 ± 0.16 g/L, respectively (all p values <0.05). Correlation analysis showed a significant negative correlation between serum Se and CHOL (r = -0.201, p < 0.01), serum Se is also associated with metabolomics markers, the negative correlation includes glyceric acid and ect., the positive correlation includes phosphorylcholine and ect. Our study suggests that high-Se exposure is negatively associated with serum lipid profiles and decreases the risk of high-TC and HDL-C dyslipidemia.</p>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"289 \",\"pages\":\"117677\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecoenv.2025.117677\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2025.117677","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
High-selenium exposure is associated with modulation of serum lipid metabolism.
At present, there is no consensus on the relationship between selenium (Se) exposure and human serum lipid metabolism. The etiological role of high-Se exposure in lipid markers, dyslipidemia, and nonalcoholic fatty liver (NAFLD) remains unclear. We used serum untargeted metabolomics analysis to evaluate whether high-Se exposure is cross-sectionally associated with lipid metabolism in adults from high-Se exposure area (n = 112) and control area (n = 101) in Hubei Province, China. An untargeted liquid chromatography/mass spectrometry (LC/MS)-based metabolomic analysis identified 144 differential pathways and yielded 204 differentially abundant metabolites, including 32 lipid metabolites associated with lipids profiles. To further explore the correlation between Se exposure and serum lipid metabolism, we measured serum levels of lipid profiles among all the people, including serum cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and apolipoprotein B (APOB). The average serum Se level of the high-Se exposure group was 537.18 μg/L, significantly higher than 72.98 μg/L in the control group (p < 0.0001). The measurement levels of serum TG, LDL-C, HDL-C, and APOB in the high-Se exposure group were 1.03 (0.76, 1.34) mmol/L, 2.25 ± 0.48 mmol/L, 1.12 ± 0.24 mmol/L, and 0.77 ± 0.15 g/L, respectively, while the control group were 1.13 (0.84, 1.80) mmol/L, 2.56 ± 0.61 mmol/L, 1.02 ± 0.22 mmol/L, and 0.83 ± 0.16 g/L, respectively (all p values <0.05). Correlation analysis showed a significant negative correlation between serum Se and CHOL (r = -0.201, p < 0.01), serum Se is also associated with metabolomics markers, the negative correlation includes glyceric acid and ect., the positive correlation includes phosphorylcholine and ect. Our study suggests that high-Se exposure is negatively associated with serum lipid profiles and decreases the risk of high-TC and HDL-C dyslipidemia.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.