Yi Yang, Xiaoyu Liu, Xinyu He, Weizheng Ren, Haiping Gu, Ruonan Wang, Xuanzhen Li
{"title":"热羧酸链霉菌12219的基因组分析及其与纤维素酶的协同作用。","authors":"Yi Yang, Xiaoyu Liu, Xinyu He, Weizheng Ren, Haiping Gu, Ruonan Wang, Xuanzhen Li","doi":"10.1016/j.ijbiomac.2025.139675","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %. This study predicted a total of 6295 genes, including 128 glycoside hydrolase genes, 21 carbohydrate esterase genes, and 54 carbohydrate-binding module genes. When corncob was used as inducer, strain 12219 secreted cellulases and hemicellulases, with xylanase activity reaching 31.15 U/mL. During the hydrolysis of sodium hydroxide treated corn stover, a notable synergistic effect between the 12219 enzyme cocktail and commercial cellulase was observed. And the maximum degree of synergism reached 1.60. When the amount of the 12219 enzyme cocktail added to the commercial cellulase was 5 mg/g, the release of glucose, xylose, and cellobiose increased by 121.35 %, 178.58 %, and 29.33 %, respectively. These findings suggested that the 12219 enzyme cocktail held great potential for industrial applications.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139675"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic analysis and synergistic effect with cellulase by Streptomyces thermocarboxydus 12219.\",\"authors\":\"Yi Yang, Xiaoyu Liu, Xinyu He, Weizheng Ren, Haiping Gu, Ruonan Wang, Xuanzhen Li\",\"doi\":\"10.1016/j.ijbiomac.2025.139675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %. This study predicted a total of 6295 genes, including 128 glycoside hydrolase genes, 21 carbohydrate esterase genes, and 54 carbohydrate-binding module genes. When corncob was used as inducer, strain 12219 secreted cellulases and hemicellulases, with xylanase activity reaching 31.15 U/mL. During the hydrolysis of sodium hydroxide treated corn stover, a notable synergistic effect between the 12219 enzyme cocktail and commercial cellulase was observed. And the maximum degree of synergism reached 1.60. When the amount of the 12219 enzyme cocktail added to the commercial cellulase was 5 mg/g, the release of glucose, xylose, and cellobiose increased by 121.35 %, 178.58 %, and 29.33 %, respectively. These findings suggested that the 12219 enzyme cocktail held great potential for industrial applications.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"139675\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.139675\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genomic analysis and synergistic effect with cellulase by Streptomyces thermocarboxydus 12219.
In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %. This study predicted a total of 6295 genes, including 128 glycoside hydrolase genes, 21 carbohydrate esterase genes, and 54 carbohydrate-binding module genes. When corncob was used as inducer, strain 12219 secreted cellulases and hemicellulases, with xylanase activity reaching 31.15 U/mL. During the hydrolysis of sodium hydroxide treated corn stover, a notable synergistic effect between the 12219 enzyme cocktail and commercial cellulase was observed. And the maximum degree of synergism reached 1.60. When the amount of the 12219 enzyme cocktail added to the commercial cellulase was 5 mg/g, the release of glucose, xylose, and cellobiose increased by 121.35 %, 178.58 %, and 29.33 %, respectively. These findings suggested that the 12219 enzyme cocktail held great potential for industrial applications.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.