Zhixuan Liang, Mingyue Kong, Ying Liu, Maosong Huang, Jian Gong
{"title":"再固结对高岭土循环变形特性的影响","authors":"Zhixuan Liang, Mingyue Kong, Ying Liu, Maosong Huang, Jian Gong","doi":"10.1007/s11440-024-02399-5","DOIUrl":null,"url":null,"abstract":"<div><p>Subgrades may be subjected to intermittent cyclic loads such as traffic loads. Under these loading conditions, excess pore water pressure can accumulate in clayey soils during cyclic loading period and dissipate during resting time. The deformation behaviour of clayey soil after reconsolidation process may be different from that under consecutive cyclic loading. A series of undrained cyclic triaxial tests, including reconsolidation process between cyclic loading stages, were performed on kaolin clay. The axial strain accumulation, excess pore water pressure accumulation, deviatoric stress–strain loop and resilience modulus under different cyclic stress ratios, initial confining pressures and degrees of reconsolidation were discussed and presented. Test results show that the reconsolidation process has significant effects on the deformation characteristics of clayey soil. The coupling effects of change of void ratio and effective mean stress result in a non-monotonic relationship between normalised total axial strain and degree of reconsolidation. In addition, an increase in the degree of reconsolidation leads to an increase in the normalised excess pore water pressure increment during 2nd cyclic loading stage, regardless of cyclic stress ratio and initial confining pressure. Furthermore, the steady resilience modulus at the end of each cyclic loading stage depends on the effective cyclic stress ratio and initial confining pressure, irrespective of reconsolidation process.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 1","pages":"149 - 165"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of reconsolidation on cyclic deformation behaviours of a kaolin clay\",\"authors\":\"Zhixuan Liang, Mingyue Kong, Ying Liu, Maosong Huang, Jian Gong\",\"doi\":\"10.1007/s11440-024-02399-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Subgrades may be subjected to intermittent cyclic loads such as traffic loads. Under these loading conditions, excess pore water pressure can accumulate in clayey soils during cyclic loading period and dissipate during resting time. The deformation behaviour of clayey soil after reconsolidation process may be different from that under consecutive cyclic loading. A series of undrained cyclic triaxial tests, including reconsolidation process between cyclic loading stages, were performed on kaolin clay. The axial strain accumulation, excess pore water pressure accumulation, deviatoric stress–strain loop and resilience modulus under different cyclic stress ratios, initial confining pressures and degrees of reconsolidation were discussed and presented. Test results show that the reconsolidation process has significant effects on the deformation characteristics of clayey soil. The coupling effects of change of void ratio and effective mean stress result in a non-monotonic relationship between normalised total axial strain and degree of reconsolidation. In addition, an increase in the degree of reconsolidation leads to an increase in the normalised excess pore water pressure increment during 2nd cyclic loading stage, regardless of cyclic stress ratio and initial confining pressure. Furthermore, the steady resilience modulus at the end of each cyclic loading stage depends on the effective cyclic stress ratio and initial confining pressure, irrespective of reconsolidation process.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"20 1\",\"pages\":\"149 - 165\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02399-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02399-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Effects of reconsolidation on cyclic deformation behaviours of a kaolin clay
Subgrades may be subjected to intermittent cyclic loads such as traffic loads. Under these loading conditions, excess pore water pressure can accumulate in clayey soils during cyclic loading period and dissipate during resting time. The deformation behaviour of clayey soil after reconsolidation process may be different from that under consecutive cyclic loading. A series of undrained cyclic triaxial tests, including reconsolidation process between cyclic loading stages, were performed on kaolin clay. The axial strain accumulation, excess pore water pressure accumulation, deviatoric stress–strain loop and resilience modulus under different cyclic stress ratios, initial confining pressures and degrees of reconsolidation were discussed and presented. Test results show that the reconsolidation process has significant effects on the deformation characteristics of clayey soil. The coupling effects of change of void ratio and effective mean stress result in a non-monotonic relationship between normalised total axial strain and degree of reconsolidation. In addition, an increase in the degree of reconsolidation leads to an increase in the normalised excess pore water pressure increment during 2nd cyclic loading stage, regardless of cyclic stress ratio and initial confining pressure. Furthermore, the steady resilience modulus at the end of each cyclic loading stage depends on the effective cyclic stress ratio and initial confining pressure, irrespective of reconsolidation process.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.