氮化镓HEMT重离子引起的单事件烧坏的TCAD分析

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jian Li, Ying Wang, Xin-Xing Fei, Biao Sun, Yan-Xing Song, Meng-Tian Bao
{"title":"氮化镓HEMT重离子引起的单事件烧坏的TCAD分析","authors":"Jian Li,&nbsp;Ying Wang,&nbsp;Xin-Xing Fei,&nbsp;Biao Sun,&nbsp;Yan-Xing Song,&nbsp;Meng-Tian Bao","doi":"10.1007/s10825-024-02275-1","DOIUrl":null,"url":null,"abstract":"<div><p>Based on simulation, this work introduces the single-event burnout (SEB) results of P-GaN gate AlGaN/GaN high electron mobility transistors (HEMTs) and proposes a hardened structure with a PN junction connected to the drain in the buffer layer. The simulation results indicate that the SEB mechanism of P-GaN gate AlGaN/GaN-HEMTs is mainly related to the charge enhancement and the impact ionization process dominated by the high-field region near the drain. Electrons in the high-field region between the gate and drain can gain sufficient energy and generate electron–hole pairs in the high-field region near the drain during the collection process. The avalanche ionization process triggered by these electrons leads to a rapid increase in the electric field, ultimately causing the peak electric field at the drain side to exceed the critical electric field of the material, resulting in SEB. The proposed hardened structure (H-HEMT) effectively improves the SEB threshold voltage by improving the electric field distribution near the drain. Under the condition of linear energy transfer (LET) of 0.6<span>\\(pC/\\mu m\\)</span> with heavy ion normal incidence, the SEB threshold voltage of the conventional structure (C-HEMT) is 230 V, while the H-HEMT can reach 420 V, showing better SEB resilience.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCAD analysis of single-event burnout caused by heavy ions for a GaN HEMT\",\"authors\":\"Jian Li,&nbsp;Ying Wang,&nbsp;Xin-Xing Fei,&nbsp;Biao Sun,&nbsp;Yan-Xing Song,&nbsp;Meng-Tian Bao\",\"doi\":\"10.1007/s10825-024-02275-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on simulation, this work introduces the single-event burnout (SEB) results of P-GaN gate AlGaN/GaN high electron mobility transistors (HEMTs) and proposes a hardened structure with a PN junction connected to the drain in the buffer layer. The simulation results indicate that the SEB mechanism of P-GaN gate AlGaN/GaN-HEMTs is mainly related to the charge enhancement and the impact ionization process dominated by the high-field region near the drain. Electrons in the high-field region between the gate and drain can gain sufficient energy and generate electron–hole pairs in the high-field region near the drain during the collection process. The avalanche ionization process triggered by these electrons leads to a rapid increase in the electric field, ultimately causing the peak electric field at the drain side to exceed the critical electric field of the material, resulting in SEB. The proposed hardened structure (H-HEMT) effectively improves the SEB threshold voltage by improving the electric field distribution near the drain. Under the condition of linear energy transfer (LET) of 0.6<span>\\\\(pC/\\\\mu m\\\\)</span> with heavy ion normal incidence, the SEB threshold voltage of the conventional structure (C-HEMT) is 230 V, while the H-HEMT can reach 420 V, showing better SEB resilience.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02275-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02275-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文在仿真的基础上,介绍了P-GaN栅极AlGaN/GaN高电子迁移率晶体管(hemt)的单事件烧坏(SEB)结果,并提出了一种采用PN结连接缓冲层漏极的硬化结构。模拟结果表明,P-GaN栅极AlGaN/GaN-HEMTs的SEB机制主要与电荷增强和以漏极附近高场区为主的冲击电离过程有关。栅极和漏极之间的高场区域的电子在收集过程中可以获得足够的能量,并在靠近漏极的高场区域产生电子-空穴对。这些电子引发的雪崩电离过程导致电场迅速增大,最终导致漏极侧的峰值电场超过材料的临界电场,从而产生SEB。所提出的硬化结构(H-HEMT)通过改善漏极附近的电场分布,有效地提高了SEB阈值电压。在线性能量传递(LET)为0.6 \(pC/\mu m\)、重离子正入射的条件下,常规结构(C-HEMT)的SEB阈值电压为230 V,而H-HEMT可达到420 V,表现出较好的SEB弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TCAD analysis of single-event burnout caused by heavy ions for a GaN HEMT

Based on simulation, this work introduces the single-event burnout (SEB) results of P-GaN gate AlGaN/GaN high electron mobility transistors (HEMTs) and proposes a hardened structure with a PN junction connected to the drain in the buffer layer. The simulation results indicate that the SEB mechanism of P-GaN gate AlGaN/GaN-HEMTs is mainly related to the charge enhancement and the impact ionization process dominated by the high-field region near the drain. Electrons in the high-field region between the gate and drain can gain sufficient energy and generate electron–hole pairs in the high-field region near the drain during the collection process. The avalanche ionization process triggered by these electrons leads to a rapid increase in the electric field, ultimately causing the peak electric field at the drain side to exceed the critical electric field of the material, resulting in SEB. The proposed hardened structure (H-HEMT) effectively improves the SEB threshold voltage by improving the electric field distribution near the drain. Under the condition of linear energy transfer (LET) of 0.6\(pC/\mu m\) with heavy ion normal incidence, the SEB threshold voltage of the conventional structure (C-HEMT) is 230 V, while the H-HEMT can reach 420 V, showing better SEB resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信