一维中稀释玻色气体的基态能

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Johannes Agerskov, Robin Reuvers, Jan Philip Solovej
{"title":"一维中稀释玻色气体的基态能","authors":"Johannes Agerskov,&nbsp;Robin Reuvers,&nbsp;Jan Philip Solovej","doi":"10.1007/s00220-024-05193-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study the ground state energy of a gas of 1D bosons with density <span>\\(\\rho \\)</span>, interacting through a general, repulsive 2-body potential with scattering length <i>a</i>, in the dilute limit <span>\\(\\rho |a|\\ll 1\\)</span>. The first terms in the expansion of the thermodynamic energy density are <span>\\((\\pi ^2\\rho ^3/3)(1+2\\rho a)\\)</span>, where the leading order is the 1D free Fermi gas. This result covers the Tonks–Girardeau limit of the Lieb–Liniger model as a special case, but given the possibility that <span>\\(a&gt;0\\)</span>, it also applies to potentials that differ significantly from a delta function. We include extensions to spinless fermions and 1D anyonic symmetries, and discuss an application to confined 3D gases.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground State Energy of Dilute Bose Gases in 1D\",\"authors\":\"Johannes Agerskov,&nbsp;Robin Reuvers,&nbsp;Jan Philip Solovej\",\"doi\":\"10.1007/s00220-024-05193-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the ground state energy of a gas of 1D bosons with density <span>\\\\(\\\\rho \\\\)</span>, interacting through a general, repulsive 2-body potential with scattering length <i>a</i>, in the dilute limit <span>\\\\(\\\\rho |a|\\\\ll 1\\\\)</span>. The first terms in the expansion of the thermodynamic energy density are <span>\\\\((\\\\pi ^2\\\\rho ^3/3)(1+2\\\\rho a)\\\\)</span>, where the leading order is the 1D free Fermi gas. This result covers the Tonks–Girardeau limit of the Lieb–Liniger model as a special case, but given the possibility that <span>\\\\(a&gt;0\\\\)</span>, it also applies to potentials that differ significantly from a delta function. We include extensions to spinless fermions and 1D anyonic symmetries, and discuss an application to confined 3D gases.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05193-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05193-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了密度为\(\rho \)的一维玻色子气体的基态能量,在稀释极限\(\rho |a|\ll 1\)下,通过散射长度为a的一般排斥二体势相互作用。热力学能量密度膨胀的第一项是\((\pi ^2\rho ^3/3)(1+2\rho a)\),其中第一阶是一维自由费米气体。这个结果涵盖了Lieb-Liniger模型的Tonks-Girardeau极限作为一个特例,但考虑到\(a>0\)的可能性,它也适用于与delta函数显著不同的势。我们包括了对无自旋费米子和一维任意子对称性的扩展,并讨论了在受限三维气体中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground State Energy of Dilute Bose Gases in 1D

We study the ground state energy of a gas of 1D bosons with density \(\rho \), interacting through a general, repulsive 2-body potential with scattering length a, in the dilute limit \(\rho |a|\ll 1\). The first terms in the expansion of the thermodynamic energy density are \((\pi ^2\rho ^3/3)(1+2\rho a)\), where the leading order is the 1D free Fermi gas. This result covers the Tonks–Girardeau limit of the Lieb–Liniger model as a special case, but given the possibility that \(a>0\), it also applies to potentials that differ significantly from a delta function. We include extensions to spinless fermions and 1D anyonic symmetries, and discuss an application to confined 3D gases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信