二维Navier边界条件下近couette剪切流的稳定阈值

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jacob Bedrossian, Siming He, Sameer Iyer, Fei Wang
{"title":"二维Navier边界条件下近couette剪切流的稳定阈值","authors":"Jacob Bedrossian,&nbsp;Siming He,&nbsp;Sameer Iyer,&nbsp;Fei Wang","doi":"10.1007/s00220-024-05175-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we prove a threshold theorem for the 2D Navier-Stokes equations posed on the periodic channel, <span>\\(\\mathbb {T} \\times [-1,1]\\)</span>, supplemented with Navier boundary conditions <span>\\(\\omega |_{y = \\pm 1} = 0\\)</span>. Initial datum is taken to be a perturbation of Couette in the following sense: the shear component of the perturbation is assumed small (in an appropriate Sobolev space) but importantly is independent of <span>\\(\\nu \\)</span>. On the other hand, the nonzero modes are assumed size <span>\\(O(\\nu ^{\\frac{1}{2}})\\)</span> in an anisotropic Sobolev space. For such datum, we prove nonlinear enhanced dissipation and inviscid damping for the resulting solution. The principal innovation is to capture quantitatively the <i>inviscid damping</i>, for which we introduce a new Singular Integral Operator which is a physical space analogue of the usual Fourier multipliers which are used to prove damping. We then include this SIO in the context of a nonlinear hypocoercivity framework.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Threshold of Nearly-Couette Shear Flows with Navier Boundary Conditions in 2D\",\"authors\":\"Jacob Bedrossian,&nbsp;Siming He,&nbsp;Sameer Iyer,&nbsp;Fei Wang\",\"doi\":\"10.1007/s00220-024-05175-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we prove a threshold theorem for the 2D Navier-Stokes equations posed on the periodic channel, <span>\\\\(\\\\mathbb {T} \\\\times [-1,1]\\\\)</span>, supplemented with Navier boundary conditions <span>\\\\(\\\\omega |_{y = \\\\pm 1} = 0\\\\)</span>. Initial datum is taken to be a perturbation of Couette in the following sense: the shear component of the perturbation is assumed small (in an appropriate Sobolev space) but importantly is independent of <span>\\\\(\\\\nu \\\\)</span>. On the other hand, the nonzero modes are assumed size <span>\\\\(O(\\\\nu ^{\\\\frac{1}{2}})\\\\)</span> in an anisotropic Sobolev space. For such datum, we prove nonlinear enhanced dissipation and inviscid damping for the resulting solution. The principal innovation is to capture quantitatively the <i>inviscid damping</i>, for which we introduce a new Singular Integral Operator which is a physical space analogue of the usual Fourier multipliers which are used to prove damping. We then include this SIO in the context of a nonlinear hypocoercivity framework.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05175-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05175-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了在周期通道\(\mathbb {T} \times [-1,1]\)上的二维Navier- stokes方程的阈值定理,并补充了Navier边界条件\(\omega |_{y = \pm 1} = 0\)。在以下意义上,初始基准被认为是Couette的扰动:假设扰动的剪切分量很小(在适当的Sobolev空间中),但重要的是与\(\nu \)无关。另一方面,在各向异性Sobolev空间中,假定非零模态的大小为\(O(\nu ^{\frac{1}{2}})\)。在此基础上,我们证明了解的非线性增强耗散和无粘阻尼。主要的创新是定量地捕捉无粘阻尼,为此我们引入了一个新的奇异积分算子,它是用于证明阻尼的常用傅立叶乘法器的物理空间模拟。然后,我们将此SIO包含在非线性低矫顽力框架的背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability Threshold of Nearly-Couette Shear Flows with Navier Boundary Conditions in 2D

In this work, we prove a threshold theorem for the 2D Navier-Stokes equations posed on the periodic channel, \(\mathbb {T} \times [-1,1]\), supplemented with Navier boundary conditions \(\omega |_{y = \pm 1} = 0\). Initial datum is taken to be a perturbation of Couette in the following sense: the shear component of the perturbation is assumed small (in an appropriate Sobolev space) but importantly is independent of \(\nu \). On the other hand, the nonzero modes are assumed size \(O(\nu ^{\frac{1}{2}})\) in an anisotropic Sobolev space. For such datum, we prove nonlinear enhanced dissipation and inviscid damping for the resulting solution. The principal innovation is to capture quantitatively the inviscid damping, for which we introduce a new Singular Integral Operator which is a physical space analogue of the usual Fourier multipliers which are used to prove damping. We then include this SIO in the context of a nonlinear hypocoercivity framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信