{"title":"磁系统的磁平坦度与E. Hopf定理","authors":"Valerio Assenza, James Marshall Reber, Ivo Terek","doi":"10.1007/s00220-024-05166-5","DOIUrl":null,"url":null,"abstract":"<div><p>Using the notion of magnetic curvature recently introduced by the first author, we extend E. Hopf’s theorem to the setting of magnetic systems. Namely, we prove that if the magnetic flow on the <i>s</i>-sphere bundle is without conjugate points, then the total magnetic curvature is non-positive, and vanishes if and only if the magnetic system is magnetically flat. We then prove that magnetic flatness is a rigid condition, in the sense that it only occurs when either the magnetic form is trivial and the metric is flat, or when the magnetic system is Kähler, the metric has constant negative sectional holomorphic curvature, and <i>s</i> equals the Mañé critical value.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05166-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetic Flatness and E. Hopf’s Theorem for Magnetic Systems\",\"authors\":\"Valerio Assenza, James Marshall Reber, Ivo Terek\",\"doi\":\"10.1007/s00220-024-05166-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the notion of magnetic curvature recently introduced by the first author, we extend E. Hopf’s theorem to the setting of magnetic systems. Namely, we prove that if the magnetic flow on the <i>s</i>-sphere bundle is without conjugate points, then the total magnetic curvature is non-positive, and vanishes if and only if the magnetic system is magnetically flat. We then prove that magnetic flatness is a rigid condition, in the sense that it only occurs when either the magnetic form is trivial and the metric is flat, or when the magnetic system is Kähler, the metric has constant negative sectional holomorphic curvature, and <i>s</i> equals the Mañé critical value.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05166-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05166-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05166-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Magnetic Flatness and E. Hopf’s Theorem for Magnetic Systems
Using the notion of magnetic curvature recently introduced by the first author, we extend E. Hopf’s theorem to the setting of magnetic systems. Namely, we prove that if the magnetic flow on the s-sphere bundle is without conjugate points, then the total magnetic curvature is non-positive, and vanishes if and only if the magnetic system is magnetically flat. We then prove that magnetic flatness is a rigid condition, in the sense that it only occurs when either the magnetic form is trivial and the metric is flat, or when the magnetic system is Kähler, the metric has constant negative sectional holomorphic curvature, and s equals the Mañé critical value.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.