哈特利-贝塞尔变换的本征函数:一个超对称Wigner-Dunkl量子力学的方法

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
F. Bouzeffour
{"title":"哈特利-贝塞尔变换的本征函数:一个超对称Wigner-Dunkl量子力学的方法","authors":"F. Bouzeffour","doi":"10.1007/s10773-025-05883-0","DOIUrl":null,"url":null,"abstract":"<div><p>Integral transforms, such as the Fourier transform and Hartley transform are indispensable tools in various scientific disciplines, particularly in solving differential and difference-differential equations. In quantum mechanics, these transforms play crucial roles, with the Fourier transform being pivotal in addressing the Schrödinger equation for harmonic oscillators. The Hartley transform, introduced as an alternative to the Fourier transform, shares essential properties and finds applications in supersymmetric quantum mechanics. This paper explores the integration of Wigner-Dunkl Quantum Mechanics with supersymmetric Quantum Mechanics, following early investigations by Post et al. and subsequent studies. We propose a modification to the conventional derivative operator by introducing the Dunkl operator, leading to the derivation of overcomplete bases for Hartley-Bessel transform eigenvectors.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Eigenfunctions of the Hartley-Bessel Transform: An Approach through Supersymmetric Wigner-Dunkl Quantum Mechanics\",\"authors\":\"F. Bouzeffour\",\"doi\":\"10.1007/s10773-025-05883-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integral transforms, such as the Fourier transform and Hartley transform are indispensable tools in various scientific disciplines, particularly in solving differential and difference-differential equations. In quantum mechanics, these transforms play crucial roles, with the Fourier transform being pivotal in addressing the Schrödinger equation for harmonic oscillators. The Hartley transform, introduced as an alternative to the Fourier transform, shares essential properties and finds applications in supersymmetric quantum mechanics. This paper explores the integration of Wigner-Dunkl Quantum Mechanics with supersymmetric Quantum Mechanics, following early investigations by Post et al. and subsequent studies. We propose a modification to the conventional derivative operator by introducing the Dunkl operator, leading to the derivation of overcomplete bases for Hartley-Bessel transform eigenvectors.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-05883-0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05883-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

积分变换,如傅里叶变换和哈特利变换是各种科学学科中不可缺少的工具,特别是在求解微分方程和微分方程时。在量子力学中,这些变换起着至关重要的作用,傅里叶变换在求解谐振子Schrödinger方程中起着关键作用。哈特利变换,作为傅里叶变换的替代方案,具有相同的基本性质,并在超对称量子力学中得到应用。本文在Post等人的早期研究和后续研究的基础上,探讨了Wigner-Dunkl量子力学与超对称量子力学的整合。我们通过引入Dunkl算子对传统的导数算子进行了改进,从而推导出Hartley-Bessel变换特征向量的过完备基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Eigenfunctions of the Hartley-Bessel Transform: An Approach through Supersymmetric Wigner-Dunkl Quantum Mechanics

Integral transforms, such as the Fourier transform and Hartley transform are indispensable tools in various scientific disciplines, particularly in solving differential and difference-differential equations. In quantum mechanics, these transforms play crucial roles, with the Fourier transform being pivotal in addressing the Schrödinger equation for harmonic oscillators. The Hartley transform, introduced as an alternative to the Fourier transform, shares essential properties and finds applications in supersymmetric quantum mechanics. This paper explores the integration of Wigner-Dunkl Quantum Mechanics with supersymmetric Quantum Mechanics, following early investigations by Post et al. and subsequent studies. We propose a modification to the conventional derivative operator by introducing the Dunkl operator, leading to the derivation of overcomplete bases for Hartley-Bessel transform eigenvectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信