{"title":"酸性矿井排水在某高品位难处理硫化金矿生物氧化中的应用","authors":"Elaheh Nouhi, Ali Ahmadi","doi":"10.1007/s12665-024-12074-3","DOIUrl":null,"url":null,"abstract":"<div><p>Acid mine drainage (AMD) is one of the challenging environmental issues in sulfidic mines. These hazardous solutions generally contain a mixture of indigenous iron- and sulfur-oxidizing microorganisms that could be used as a source for biotechnological purposes. In this study, the ability of an AMD from a sulfide-bearing gold mine to biooxidize its high-grade pyritic gold ore was investigated and its efficiency was compared with iron- and sulfur-oxidizing microorganisms from a microbial culture bank. Experiments were conducted at 35 and 45 ̊C, initial pH values of 1.5 and 2 in a Norris culture medium prepared from deionized and saline local waters. The effects of some critical parameters including the initial pH and the concentrations of ferrous or ferric sulfate were investigated on the efficiency of the biooxidation process and gold extraction. The results showed that the AMD microorganisms had a greater ability to oxidize the sulfide ore than the microorganisms from the microbial bank. The addition of ferrous and ferric sulfates increased the efficiency of biooxidation, while high concentrations of these ions caused the formation of inhibitory precipitates (jarosite) and decreased gold extraction. The results showed that biooxidation using the AMD medium in the saline local water increased the extraction of gold from 73 to 99%. It can be concluded that the application of AMD for the treatment of refractory gold sulfide ores could be an efficient solution for increasing gold extraction and reducing environmental problems.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of acid mine drainage for the biooxidation of a high-grade refractory sulfide gold ore\",\"authors\":\"Elaheh Nouhi, Ali Ahmadi\",\"doi\":\"10.1007/s12665-024-12074-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acid mine drainage (AMD) is one of the challenging environmental issues in sulfidic mines. These hazardous solutions generally contain a mixture of indigenous iron- and sulfur-oxidizing microorganisms that could be used as a source for biotechnological purposes. In this study, the ability of an AMD from a sulfide-bearing gold mine to biooxidize its high-grade pyritic gold ore was investigated and its efficiency was compared with iron- and sulfur-oxidizing microorganisms from a microbial culture bank. Experiments were conducted at 35 and 45 ̊C, initial pH values of 1.5 and 2 in a Norris culture medium prepared from deionized and saline local waters. The effects of some critical parameters including the initial pH and the concentrations of ferrous or ferric sulfate were investigated on the efficiency of the biooxidation process and gold extraction. The results showed that the AMD microorganisms had a greater ability to oxidize the sulfide ore than the microorganisms from the microbial bank. The addition of ferrous and ferric sulfates increased the efficiency of biooxidation, while high concentrations of these ions caused the formation of inhibitory precipitates (jarosite) and decreased gold extraction. The results showed that biooxidation using the AMD medium in the saline local water increased the extraction of gold from 73 to 99%. It can be concluded that the application of AMD for the treatment of refractory gold sulfide ores could be an efficient solution for increasing gold extraction and reducing environmental problems.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"84 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-12074-3\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-12074-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Application of acid mine drainage for the biooxidation of a high-grade refractory sulfide gold ore
Acid mine drainage (AMD) is one of the challenging environmental issues in sulfidic mines. These hazardous solutions generally contain a mixture of indigenous iron- and sulfur-oxidizing microorganisms that could be used as a source for biotechnological purposes. In this study, the ability of an AMD from a sulfide-bearing gold mine to biooxidize its high-grade pyritic gold ore was investigated and its efficiency was compared with iron- and sulfur-oxidizing microorganisms from a microbial culture bank. Experiments were conducted at 35 and 45 ̊C, initial pH values of 1.5 and 2 in a Norris culture medium prepared from deionized and saline local waters. The effects of some critical parameters including the initial pH and the concentrations of ferrous or ferric sulfate were investigated on the efficiency of the biooxidation process and gold extraction. The results showed that the AMD microorganisms had a greater ability to oxidize the sulfide ore than the microorganisms from the microbial bank. The addition of ferrous and ferric sulfates increased the efficiency of biooxidation, while high concentrations of these ions caused the formation of inhibitory precipitates (jarosite) and decreased gold extraction. The results showed that biooxidation using the AMD medium in the saline local water increased the extraction of gold from 73 to 99%. It can be concluded that the application of AMD for the treatment of refractory gold sulfide ores could be an efficient solution for increasing gold extraction and reducing environmental problems.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.