一类四维scft产生的非容许能级的简单轨道仿射VOAs

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Tomoyuki Arakawa, Xuanzhong Dai, Justine Fasquel, Bohan Li, Anne Moreau
{"title":"一类四维scft产生的非容许能级的简单轨道仿射VOAs","authors":"Tomoyuki Arakawa,&nbsp;Xuanzhong Dai,&nbsp;Justine Fasquel,&nbsp;Bohan Li,&nbsp;Anne Moreau","doi":"10.1007/s00220-024-05196-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the representations of some simple affine vertex algebras at non-admissible level arising from rank one 4D SCFTs. In particular, we classify the irreducible highest weight modules of <span>\\(L_{-2}(G_2)\\)</span> and <span>\\(L_{-2}(B_3)\\)</span>. It is known by the works of Adamović and Perše that these vertex algebras can be conformally embedded into <span>\\(L_{-2}(D_4)\\)</span>. We also compute the associated variety of <span>\\(L_{-2}(G_2)\\)</span>, and show that it is the orbifold of the associated variety of <span>\\(L_{-2}(D_4)\\)</span> by the symmetric group of degree 3 which is the Dynkin diagram automorphism group of <span>\\(D_4\\)</span>. This provides a new interesting example of associated variety satisfying a number of conjectures in the context of orbifold vertex algebras.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Simple Orbifold Affine VOAs at Non-admissible Level Arising from Rank One 4D SCFTs\",\"authors\":\"Tomoyuki Arakawa,&nbsp;Xuanzhong Dai,&nbsp;Justine Fasquel,&nbsp;Bohan Li,&nbsp;Anne Moreau\",\"doi\":\"10.1007/s00220-024-05196-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the representations of some simple affine vertex algebras at non-admissible level arising from rank one 4D SCFTs. In particular, we classify the irreducible highest weight modules of <span>\\\\(L_{-2}(G_2)\\\\)</span> and <span>\\\\(L_{-2}(B_3)\\\\)</span>. It is known by the works of Adamović and Perše that these vertex algebras can be conformally embedded into <span>\\\\(L_{-2}(D_4)\\\\)</span>. We also compute the associated variety of <span>\\\\(L_{-2}(G_2)\\\\)</span>, and show that it is the orbifold of the associated variety of <span>\\\\(L_{-2}(D_4)\\\\)</span> by the symmetric group of degree 3 which is the Dynkin diagram automorphism group of <span>\\\\(D_4\\\\)</span>. This provides a new interesting example of associated variety satisfying a number of conjectures in the context of orbifold vertex algebras.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05196-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05196-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了一些简单仿射顶点代数在非容许水平上的表示。特别地,我们对\(L_{-2}(G_2)\)和\(L_{-2}(B_3)\)的不可约最高权模块进行了分类。根据adamovioc和Perše的研究,这些顶点代数可以共形嵌入\(L_{-2}(D_4)\)。我们还计算了\(L_{-2}(G_2)\)的关联变量,并通过\(D_4\)的Dynkin图自同构群的3次对称群证明了它是\(L_{-2}(D_4)\)的关联变量的轨道。这提供了一个新的有趣的相关变化的例子,满足了一些关于轨道顶点代数的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Simple Orbifold Affine VOAs at Non-admissible Level Arising from Rank One 4D SCFTs

We study the representations of some simple affine vertex algebras at non-admissible level arising from rank one 4D SCFTs. In particular, we classify the irreducible highest weight modules of \(L_{-2}(G_2)\) and \(L_{-2}(B_3)\). It is known by the works of Adamović and Perše that these vertex algebras can be conformally embedded into \(L_{-2}(D_4)\). We also compute the associated variety of \(L_{-2}(G_2)\), and show that it is the orbifold of the associated variety of \(L_{-2}(D_4)\) by the symmetric group of degree 3 which is the Dynkin diagram automorphism group of \(D_4\). This provides a new interesting example of associated variety satisfying a number of conjectures in the context of orbifold vertex algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信