随机阿诺德猜想:辛映射的一种新的概率Conley-Zehnder理论

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Álvaro Pelayo, Fraydoun Rezakhanlou
{"title":"随机阿诺德猜想:辛映射的一种新的概率Conley-Zehnder理论","authors":"Álvaro Pelayo,&nbsp;Fraydoun Rezakhanlou","doi":"10.1007/s00220-024-05160-x","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the classical Conley-Zehnder Theorem and the Arnold Conjecture in symplectic topology, we prove a number of probabilistic theorems about the existence and density of fixed points of <i>symplectic strand diffeomorphisms</i> in dimensions greater than 2. These are symplectic diffeomorphisms <span>\\(\\Phi = (Q,P): {{\\mathbb {R}}}^{d} \\times {{\\mathbb {R}}}^{d} \\rightarrow {{\\mathbb {R}}}^{d} \\times {{\\mathbb {R}}}^{d}\\)</span> on the variables (<i>q</i>, <i>p</i>) such that for every <span>\\(p\\in {{\\mathbb {R}}}^d\\)</span> the induced map <span>\\(q\\mapsto Q(q,p)\\)</span> is a diffeomorphism of <span>\\({{\\mathbb {R}}}^d\\)</span>. In particular we verify that quasiperiodic symplectic strand diffeomorphisms have infinitely many fixed points almost surely, provided certain natural conditions hold (inspired by the conditions in the Conley-Zehnder Theorem). The paper contains also a number of theorems which go well beyond the quasiperiodic case. Overall the paper falls within the area of stochastic dynamics but with a very strong symplectic geometric motivation, and as such its main inspiration can be traced back to Poincaré’s fundamental work on celestial mechanics and the restricted 3-body problem.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05160-x.pdf","citationCount":"0","resultStr":"{\"title\":\"The Random Arnold Conjecture: A New Probabilistic Conley-Zehnder Theory for Symplectic Maps\",\"authors\":\"Álvaro Pelayo,&nbsp;Fraydoun Rezakhanlou\",\"doi\":\"10.1007/s00220-024-05160-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by the classical Conley-Zehnder Theorem and the Arnold Conjecture in symplectic topology, we prove a number of probabilistic theorems about the existence and density of fixed points of <i>symplectic strand diffeomorphisms</i> in dimensions greater than 2. These are symplectic diffeomorphisms <span>\\\\(\\\\Phi = (Q,P): {{\\\\mathbb {R}}}^{d} \\\\times {{\\\\mathbb {R}}}^{d} \\\\rightarrow {{\\\\mathbb {R}}}^{d} \\\\times {{\\\\mathbb {R}}}^{d}\\\\)</span> on the variables (<i>q</i>, <i>p</i>) such that for every <span>\\\\(p\\\\in {{\\\\mathbb {R}}}^d\\\\)</span> the induced map <span>\\\\(q\\\\mapsto Q(q,p)\\\\)</span> is a diffeomorphism of <span>\\\\({{\\\\mathbb {R}}}^d\\\\)</span>. In particular we verify that quasiperiodic symplectic strand diffeomorphisms have infinitely many fixed points almost surely, provided certain natural conditions hold (inspired by the conditions in the Conley-Zehnder Theorem). The paper contains also a number of theorems which go well beyond the quasiperiodic case. Overall the paper falls within the area of stochastic dynamics but with a very strong symplectic geometric motivation, and as such its main inspiration can be traced back to Poincaré’s fundamental work on celestial mechanics and the restricted 3-body problem.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05160-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05160-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05160-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在经典的Conley-Zehnder定理和辛拓扑中的Arnold猜想的启发下,我们证明了大于2维的辛链微分同态不动点的存在性和不动点密度的一些概率定理。这些是变量(q, p)上的辛微分同态\(\Phi = (Q,P): {{\mathbb {R}}}^{d} \times {{\mathbb {R}}}^{d} \rightarrow {{\mathbb {R}}}^{d} \times {{\mathbb {R}}}^{d}\),使得对于每一个\(p\in {{\mathbb {R}}}^d\),诱导映射\(q\mapsto Q(q,p)\)都是\({{\mathbb {R}}}^d\)的微分同态。特别地,我们几乎肯定地证明了准周期辛链微分同态具有无限多个不动点,只要满足一定的自然条件(受Conley-Zehnder定理的启发)。本文还包含了一些远远超出准周期情况的定理。总的来说,这篇论文属于随机动力学领域,但具有很强的辛几何动机,因此它的主要灵感可以追溯到庞加莱在天体力学和受限三体问题上的基本工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Random Arnold Conjecture: A New Probabilistic Conley-Zehnder Theory for Symplectic Maps

Inspired by the classical Conley-Zehnder Theorem and the Arnold Conjecture in symplectic topology, we prove a number of probabilistic theorems about the existence and density of fixed points of symplectic strand diffeomorphisms in dimensions greater than 2. These are symplectic diffeomorphisms \(\Phi = (Q,P): {{\mathbb {R}}}^{d} \times {{\mathbb {R}}}^{d} \rightarrow {{\mathbb {R}}}^{d} \times {{\mathbb {R}}}^{d}\) on the variables (qp) such that for every \(p\in {{\mathbb {R}}}^d\) the induced map \(q\mapsto Q(q,p)\) is a diffeomorphism of \({{\mathbb {R}}}^d\). In particular we verify that quasiperiodic symplectic strand diffeomorphisms have infinitely many fixed points almost surely, provided certain natural conditions hold (inspired by the conditions in the Conley-Zehnder Theorem). The paper contains also a number of theorems which go well beyond the quasiperiodic case. Overall the paper falls within the area of stochastic dynamics but with a very strong symplectic geometric motivation, and as such its main inspiration can be traced back to Poincaré’s fundamental work on celestial mechanics and the restricted 3-body problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信