第一通道渗透、交错的局部唯一性与随机游走容量

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Alexis Prévost
{"title":"第一通道渗透、交错的局部唯一性与随机游走容量","authors":"Alexis Prévost","doi":"10.1007/s00220-024-05195-0","DOIUrl":null,"url":null,"abstract":"<div><p>The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Prévost (Ann Appl Probab 34(2):1846–1895), where it is shown that on <span>\\(\\mathbb {Z}^d\\)</span>, <span>\\(d\\ge 3\\)</span>, the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05195-0.pdf","citationCount":"0","resultStr":"{\"title\":\"First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk\",\"authors\":\"Alexis Prévost\",\"doi\":\"10.1007/s00220-024-05195-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Prévost (Ann Appl Probab 34(2):1846–1895), where it is shown that on <span>\\\\(\\\\mathbb {Z}^d\\\\)</span>, <span>\\\\(d\\\\ge 3\\\\)</span>, the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05195-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05195-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05195-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Andres和pracimvost (Ann Appl Probab 34(2): 1846-1895)对随机穿插模型的第一通道渗透(FPP)进行了研究,在\(\mathbb {Z}^d\), \(d\ge 3\)上,FPP距离与图距离有高概率相当。在本文中,我们给出了最后一个概率的渐近尖锐下界,该下界还适用于大量具有多项式体积增长和Green函数的多项式衰减的瞬态图。当考虑低强度区域的交错集时,前一个边界实际上在整个近临界阶段都有效。在低维情况下,我们也给出了FPP结果的两种应用:随机交错局部唯一性的大偏差边界和球内随机游动的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First Passage Percolation, Local Uniqueness for Interlacements and Capacity of Random Walk

The study of first passage percolation (FPP) for the random interlacements model has been initiated in Andres and Prévost (Ann Appl Probab 34(2):1846–1895), where it is shown that on \(\mathbb {Z}^d\), \(d\ge 3\), the FPP distance is comparable to the graph distance with high probability. In this article, we give an asymptotically sharp lower bound on this last probability, which additionally holds on a large class of transient graphs with polynomial volume growth and polynomial decay of the Green function. When considering the interlacement set in the low-intensity regime, the previous bound is in fact valid throughout the near-critical phase. In low dimension, we also present two applications of this FPP result: sharp large deviation bounds on local uniqueness of random interlacements, and on the capacity of a random walk in a ball.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信