Shuya Zhang, Yixin Zhao, Mingda Che, Renliang Huang, Mei Cui, Wei Qi and Rongxin Su
{"title":"高密度聚乙烯增强用丙酰改性纸浆纤维的无溶剂制备","authors":"Shuya Zhang, Yixin Zhao, Mingda Che, Renliang Huang, Mei Cui, Wei Qi and Rongxin Su","doi":"10.1039/D4GC03885A","DOIUrl":null,"url":null,"abstract":"<p >With the advancement of lightweight and high-strength fiber-reinforced composites, various chemical modification methods have been proposed to improve the compatibility between fiber and plastic matrix. Among these, acetic anhydride modification is particularly notable, but its low activity necessitates the use of hazardous agents and results in suboptimal mechanical properties after reinforcement. Herein, a solvent-free and recoverable esterification approach was developed to modify pulp fibers with propionic anhydride (PAF). Subsequently, the high-density polyethylene (HDPE) was reinforced at multiple levels through capacity addition, filling, and premixing. The results showed that the optimal mechanical properties and minimum coefficient of thermal expansion (CTE) of HDPE/PAF composites were achieved at a DS value of 0.40. Compared to the unmodified fiber-reinforced composites, propionylation not only improved the discoloration of HDPE/PAF composites but also enhanced its hydrophobicity, as evidenced by an increase in the water contact angle from 89.2° to 103.4°. Moreover, compared to the neat HDPE, the tensile strength and modulus increased by a factor of 2.4 and 3.3, respectively, surpassing the improvements reported for other acid anhydride modifications. These findings indicated that the PAF could be uniformly dispersed in the HDPE matrix through a dual network structure. The successful attempts to reinforce other polyolefin matrices and achieve kilogram-scale production have demonstrated the practicality and feasibility of this approach for industrial applications.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 3","pages":" 782-792"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent-free preparation of propionyl-modified pulp fibers for high-density polyethylene reinforcement†\",\"authors\":\"Shuya Zhang, Yixin Zhao, Mingda Che, Renliang Huang, Mei Cui, Wei Qi and Rongxin Su\",\"doi\":\"10.1039/D4GC03885A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the advancement of lightweight and high-strength fiber-reinforced composites, various chemical modification methods have been proposed to improve the compatibility between fiber and plastic matrix. Among these, acetic anhydride modification is particularly notable, but its low activity necessitates the use of hazardous agents and results in suboptimal mechanical properties after reinforcement. Herein, a solvent-free and recoverable esterification approach was developed to modify pulp fibers with propionic anhydride (PAF). Subsequently, the high-density polyethylene (HDPE) was reinforced at multiple levels through capacity addition, filling, and premixing. The results showed that the optimal mechanical properties and minimum coefficient of thermal expansion (CTE) of HDPE/PAF composites were achieved at a DS value of 0.40. Compared to the unmodified fiber-reinforced composites, propionylation not only improved the discoloration of HDPE/PAF composites but also enhanced its hydrophobicity, as evidenced by an increase in the water contact angle from 89.2° to 103.4°. Moreover, compared to the neat HDPE, the tensile strength and modulus increased by a factor of 2.4 and 3.3, respectively, surpassing the improvements reported for other acid anhydride modifications. These findings indicated that the PAF could be uniformly dispersed in the HDPE matrix through a dual network structure. The successful attempts to reinforce other polyolefin matrices and achieve kilogram-scale production have demonstrated the practicality and feasibility of this approach for industrial applications.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 3\",\"pages\":\" 782-792\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc03885a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc03885a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Solvent-free preparation of propionyl-modified pulp fibers for high-density polyethylene reinforcement†
With the advancement of lightweight and high-strength fiber-reinforced composites, various chemical modification methods have been proposed to improve the compatibility between fiber and plastic matrix. Among these, acetic anhydride modification is particularly notable, but its low activity necessitates the use of hazardous agents and results in suboptimal mechanical properties after reinforcement. Herein, a solvent-free and recoverable esterification approach was developed to modify pulp fibers with propionic anhydride (PAF). Subsequently, the high-density polyethylene (HDPE) was reinforced at multiple levels through capacity addition, filling, and premixing. The results showed that the optimal mechanical properties and minimum coefficient of thermal expansion (CTE) of HDPE/PAF composites were achieved at a DS value of 0.40. Compared to the unmodified fiber-reinforced composites, propionylation not only improved the discoloration of HDPE/PAF composites but also enhanced its hydrophobicity, as evidenced by an increase in the water contact angle from 89.2° to 103.4°. Moreover, compared to the neat HDPE, the tensile strength and modulus increased by a factor of 2.4 and 3.3, respectively, surpassing the improvements reported for other acid anhydride modifications. These findings indicated that the PAF could be uniformly dispersed in the HDPE matrix through a dual network structure. The successful attempts to reinforce other polyolefin matrices and achieve kilogram-scale production have demonstrated the practicality and feasibility of this approach for industrial applications.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.