Linqi Cheng, Mengfan Li, Xupeng Zhang, Wanting Wang, Lina Zhao and Heng-Guo Wang
{"title":"用于调整锌离子溶剂化化学和促进氢离子存储的大分子电解质工程,以实现稳定的水性有机锌电池†","authors":"Linqi Cheng, Mengfan Li, Xupeng Zhang, Wanting Wang, Lina Zhao and Heng-Guo Wang","doi":"10.1039/D4GC05107F","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc-organic batteries (AZOBs) have attracted attention because they have the advantages of both organic batteries and aqueous zinc-ion batteries. Nevertheless, the hydrogen evolution reaction and the unrestrained growth of Zn dendrites still limit the further development of AZOBs. In this work, we demonstrate that the macromolecular electrolyte engineering using porphyrin derivatives with different peripheral substituents could not only restrain the solvation sheath of Zn<small><sup>2+</sup></small> and inhibit the parasitic reactions but also boost H<small><sup>+</sup></small> storage for AZOBs. Among various porphyrin derivatives, the tetraphenylporphyrin tetrasulfonic acid (TPPS) additive has the ability to facilitate the formation of a Zn-porphyrin complex to promote uniform Zn<small><sup>2+</sup></small> deposition, resulting in superior Zn symmetric cells with longer cycling stability over 900 h and smaller overpotential of 35.3 mV. Furthermore, the full cell and pouch-type cell with quinone-fused aza-phenazine (QAP) cathode also exhibit impressive electrochemical performance. Even at different bending angles, the change in specific capacities of pouch-type cells is negligible. These findings furnish an advanced concept for the application of porphyrin derivatives as an additive for the further development of AZOBs.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 3","pages":" 660-669"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macromolecular electrolyte engineering for tuning Zn-ion solvation chemistry and boosting H+ storage toward stable aqueous zinc-organic batteries†\",\"authors\":\"Linqi Cheng, Mengfan Li, Xupeng Zhang, Wanting Wang, Lina Zhao and Heng-Guo Wang\",\"doi\":\"10.1039/D4GC05107F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aqueous zinc-organic batteries (AZOBs) have attracted attention because they have the advantages of both organic batteries and aqueous zinc-ion batteries. Nevertheless, the hydrogen evolution reaction and the unrestrained growth of Zn dendrites still limit the further development of AZOBs. In this work, we demonstrate that the macromolecular electrolyte engineering using porphyrin derivatives with different peripheral substituents could not only restrain the solvation sheath of Zn<small><sup>2+</sup></small> and inhibit the parasitic reactions but also boost H<small><sup>+</sup></small> storage for AZOBs. Among various porphyrin derivatives, the tetraphenylporphyrin tetrasulfonic acid (TPPS) additive has the ability to facilitate the formation of a Zn-porphyrin complex to promote uniform Zn<small><sup>2+</sup></small> deposition, resulting in superior Zn symmetric cells with longer cycling stability over 900 h and smaller overpotential of 35.3 mV. Furthermore, the full cell and pouch-type cell with quinone-fused aza-phenazine (QAP) cathode also exhibit impressive electrochemical performance. Even at different bending angles, the change in specific capacities of pouch-type cells is negligible. These findings furnish an advanced concept for the application of porphyrin derivatives as an additive for the further development of AZOBs.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 3\",\"pages\":\" 660-669\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc05107f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc05107f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Macromolecular electrolyte engineering for tuning Zn-ion solvation chemistry and boosting H+ storage toward stable aqueous zinc-organic batteries†
Aqueous zinc-organic batteries (AZOBs) have attracted attention because they have the advantages of both organic batteries and aqueous zinc-ion batteries. Nevertheless, the hydrogen evolution reaction and the unrestrained growth of Zn dendrites still limit the further development of AZOBs. In this work, we demonstrate that the macromolecular electrolyte engineering using porphyrin derivatives with different peripheral substituents could not only restrain the solvation sheath of Zn2+ and inhibit the parasitic reactions but also boost H+ storage for AZOBs. Among various porphyrin derivatives, the tetraphenylporphyrin tetrasulfonic acid (TPPS) additive has the ability to facilitate the formation of a Zn-porphyrin complex to promote uniform Zn2+ deposition, resulting in superior Zn symmetric cells with longer cycling stability over 900 h and smaller overpotential of 35.3 mV. Furthermore, the full cell and pouch-type cell with quinone-fused aza-phenazine (QAP) cathode also exhibit impressive electrochemical performance. Even at different bending angles, the change in specific capacities of pouch-type cells is negligible. These findings furnish an advanced concept for the application of porphyrin derivatives as an additive for the further development of AZOBs.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.