具有自适应线性化误差限的序列线性规划

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Dorijan Leko;Mario Vašak
{"title":"具有自适应线性化误差限的序列线性规划","authors":"Dorijan Leko;Mario Vašak","doi":"10.1109/LCSYS.2024.3519547","DOIUrl":null,"url":null,"abstract":"This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3051-3056"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806887","citationCount":"0","resultStr":"{\"title\":\"Sequential Linear Programming With Adaptive Linearization Error Limits for All-Time Feasibility\",\"authors\":\"Dorijan Leko;Mario Vašak\",\"doi\":\"10.1109/LCSYS.2024.3519547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3051-3056\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806887\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806887/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于序列线性规划(SLP)的增强型信任域方法(TRM),旨在改进约束非线性规划问题的初始可行解,同时在整个SLP迭代过程中保持临时解的可行性。该方法采用可行区域的多面体次逼近,在中间解周围定义为基于线性化误差可变极限的水平集。在保证线性化误差的最大限度的前提下,利用信任域建立了多面体可行域。该方法采用可变线性化误差极限,在迭代过程中自适应调整可行域的大小,从而收敛到局部最优。通过减小信任半径的大小实现局部收敛。一个案例研究说明了所提出方法的有效性,并将其与对被操纵变量的允许变化使用启发式限制的基准TRM进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Linear Programming With Adaptive Linearization Error Limits for All-Time Feasibility
This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信