{"title":"具有自适应线性化误差限的序列线性规划","authors":"Dorijan Leko;Mario Vašak","doi":"10.1109/LCSYS.2024.3519547","DOIUrl":null,"url":null,"abstract":"This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3051-3056"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806887","citationCount":"0","resultStr":"{\"title\":\"Sequential Linear Programming With Adaptive Linearization Error Limits for All-Time Feasibility\",\"authors\":\"Dorijan Leko;Mario Vašak\",\"doi\":\"10.1109/LCSYS.2024.3519547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3051-3056\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806887\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806887/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Sequential Linear Programming With Adaptive Linearization Error Limits for All-Time Feasibility
This letter presents an enhanced Trust Region Method (TRM) for Sequential Linear Programming (SLP) designed to improve the initial feasible solution to a constrained nonlinear programming problem while maintaining the interim solutions feasibility throughout the SLP iterations. The method employs a polytopic sub-approximation of the feasible region, defined around the interim solution as a level set based on variable limits for the linearization error. This polytopic feasible region is established by using a trust region that ensures that maximum limits of the linearization errors are respected. The method adaptively adjusts the size of the feasible region during iterations to achieve convergence to a local optimum by employing variable linearization error limits. Local convergence is attained by reducing the size of the trust radius. A case study illustrates the effectiveness of the proposed method, which is compared to the benchmark TRM that uses heuristic limits on the permissible changes in manipulated variables.