基于动量的下肢外骨骼站立平衡控制器的实现与调整

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
A. Vallinas Prieto;A. Q. L. Keemink;E. H. F. van Asseldonk;H. van der Kooij
{"title":"基于动量的下肢外骨骼站立平衡控制器的实现与调整","authors":"A. Vallinas Prieto;A. Q. L. Keemink;E. H. F. van Asseldonk;H. van der Kooij","doi":"10.1109/TNSRE.2025.3526424","DOIUrl":null,"url":null,"abstract":"Lower limb exoskeletons (LLEs) are wearable devices that can restore the movement autonomy of paraplegic users. LLEs can restore the users’ ability to stand upright and walk. However, most of the commercially available and clinically used LLEs rely on the user maintaining balance through the use of crutches. Recent improvements in the design and control of LLEs and other legged robots allow for autonomous balance control. In this work, we implement and evaluate a momentum-based standing balance controller in the Symbitron LLE, consisting of eight active (torque-controlled) and two passive joints. We first investigate how gain tuning of the center of mass tracking control law, part of a multi-objective optimal controller, affects balancing performance. We apply pushes on different device locations while in parallel-stance, compare the response for different gains, and derive heuristic guidelines for controller tuning given the control architecture, high-level goals, and hardware limitations. Next, we show how this controller successfully prescribes joint torques to the LLE to maintain balance with a paraplegic user. The LLE can autonomously balance the user and reject mediolateral and anteroposterior pushes in the order of 60 N at hip height (and 40 N at shoulder height) while standing in parallel-stance, staggered-stance with both feet at the same height, and staggered-stance with a height difference of 0.05 m between the feet. This work presents a viable control strategy for torque-controlled light-weight under-actuated LLEs to keep the balance of paraplegic users during stance, which is a necessary starting point towards autonomous balance control during gait.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"343-353"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829591","citationCount":"0","resultStr":"{\"title\":\"Implementation and Tuning of Momentum-Based Controller for Standing Balance in a Lower-Limb Exoskeleton With Paraplegic User\",\"authors\":\"A. Vallinas Prieto;A. Q. L. Keemink;E. H. F. van Asseldonk;H. van der Kooij\",\"doi\":\"10.1109/TNSRE.2025.3526424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower limb exoskeletons (LLEs) are wearable devices that can restore the movement autonomy of paraplegic users. LLEs can restore the users’ ability to stand upright and walk. However, most of the commercially available and clinically used LLEs rely on the user maintaining balance through the use of crutches. Recent improvements in the design and control of LLEs and other legged robots allow for autonomous balance control. In this work, we implement and evaluate a momentum-based standing balance controller in the Symbitron LLE, consisting of eight active (torque-controlled) and two passive joints. We first investigate how gain tuning of the center of mass tracking control law, part of a multi-objective optimal controller, affects balancing performance. We apply pushes on different device locations while in parallel-stance, compare the response for different gains, and derive heuristic guidelines for controller tuning given the control architecture, high-level goals, and hardware limitations. Next, we show how this controller successfully prescribes joint torques to the LLE to maintain balance with a paraplegic user. The LLE can autonomously balance the user and reject mediolateral and anteroposterior pushes in the order of 60 N at hip height (and 40 N at shoulder height) while standing in parallel-stance, staggered-stance with both feet at the same height, and staggered-stance with a height difference of 0.05 m between the feet. This work presents a viable control strategy for torque-controlled light-weight under-actuated LLEs to keep the balance of paraplegic users during stance, which is a necessary starting point towards autonomous balance control during gait.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"343-353\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829591\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10829591/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10829591/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

下肢外骨骼(LLEs)是一种可穿戴设备,可以恢复截瘫用户的运动自主权。LLEs可以恢复使用者站立和行走的能力。然而,大多数商用和临床使用的lle依赖于使用者通过使用拐杖来保持平衡。LLEs和其他有腿机器人在设计和控制方面的最新改进允许自主平衡控制。在这项工作中,我们在Symbitron LLE中实现并评估了一个基于动量的站立平衡控制器,该控制器由八个主动(扭矩控制)关节和两个被动关节组成。我们首先研究了多目标最优控制器的质量中心跟踪控制律的增益调谐如何影响平衡性能。我们在并行状态下对不同的设备位置应用推送,比较不同增益的响应,并在给定控制架构、高级目标和硬件限制的情况下推导出控制器调优的启发式指南。接下来,我们将展示该控制器如何成功地为LLE规定关节扭矩以保持与截瘫用户的平衡。在平行站姿、双脚同一高度错开站姿、两脚高度差0.05 m错开站姿时,LLE能够自主平衡使用者,拒绝髋部高度60牛左右(肩高40牛左右)的中外侧和前后侧推力。本文提出了一种可行的力矩控制轻型欠驱动LLEs控制策略,以保持截瘫使用者站立时的平衡,这是实现步态自主平衡控制的必要起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation and Tuning of Momentum-Based Controller for Standing Balance in a Lower-Limb Exoskeleton With Paraplegic User
Lower limb exoskeletons (LLEs) are wearable devices that can restore the movement autonomy of paraplegic users. LLEs can restore the users’ ability to stand upright and walk. However, most of the commercially available and clinically used LLEs rely on the user maintaining balance through the use of crutches. Recent improvements in the design and control of LLEs and other legged robots allow for autonomous balance control. In this work, we implement and evaluate a momentum-based standing balance controller in the Symbitron LLE, consisting of eight active (torque-controlled) and two passive joints. We first investigate how gain tuning of the center of mass tracking control law, part of a multi-objective optimal controller, affects balancing performance. We apply pushes on different device locations while in parallel-stance, compare the response for different gains, and derive heuristic guidelines for controller tuning given the control architecture, high-level goals, and hardware limitations. Next, we show how this controller successfully prescribes joint torques to the LLE to maintain balance with a paraplegic user. The LLE can autonomously balance the user and reject mediolateral and anteroposterior pushes in the order of 60 N at hip height (and 40 N at shoulder height) while standing in parallel-stance, staggered-stance with both feet at the same height, and staggered-stance with a height difference of 0.05 m between the feet. This work presents a viable control strategy for torque-controlled light-weight under-actuated LLEs to keep the balance of paraplegic users during stance, which is a necessary starting point towards autonomous balance control during gait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信