具有初始状态不确定性的主动感知:策略梯度方法

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Chongyang Shi;Shuo Han;Michael Dorothy;Jie Fu
{"title":"具有初始状态不确定性的主动感知:策略梯度方法","authors":"Chongyang Shi;Shuo Han;Michael Dorothy;Jie Fu","doi":"10.1109/LCSYS.2024.3513896","DOIUrl":null,"url":null,"abstract":"This letter studies the synthesis of an active perception policy that maximizes the information leakage of the initial state in a stochastic system modeled as a hidden Markov model (HMM). Specifically, the emission function of the HMM is controllable with a set of perception or sensor query actions. Given the goal is to infer the initial state from partial observations in the HMM, we use Shannon conditional entropy as the planning objective and develop a novel policy gradient method with convergence guarantees. By leveraging a variant of observable operators in HMMs, we prove several important properties of the gradient of the conditional entropy with respect to the policy parameters, which allow efficient computation of the policy gradient and stable and fast convergence. We demonstrate the effectiveness of our solution by applying it to an inference problem in a stochastic grid world environment.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3147-3152"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Perception With Initial-State Uncertainty: A Policy Gradient Method\",\"authors\":\"Chongyang Shi;Shuo Han;Michael Dorothy;Jie Fu\",\"doi\":\"10.1109/LCSYS.2024.3513896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter studies the synthesis of an active perception policy that maximizes the information leakage of the initial state in a stochastic system modeled as a hidden Markov model (HMM). Specifically, the emission function of the HMM is controllable with a set of perception or sensor query actions. Given the goal is to infer the initial state from partial observations in the HMM, we use Shannon conditional entropy as the planning objective and develop a novel policy gradient method with convergence guarantees. By leveraging a variant of observable operators in HMMs, we prove several important properties of the gradient of the conditional entropy with respect to the policy parameters, which allow efficient computation of the policy gradient and stable and fast convergence. We demonstrate the effectiveness of our solution by applying it to an inference problem in a stochastic grid world environment.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3147-3152\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10786314/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10786314/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种主动感知策略的综合,该策略在一个随机系统中以隐马尔可夫模型(HMM)建模,使初始状态的信息泄漏最大化。具体来说,HMM的发射函数可以通过一组感知或传感器查询动作来控制。考虑到HMM的目标是通过局部观测推断初始状态,我们使用Shannon条件熵作为规划目标,并开发了一种具有收敛保证的策略梯度方法。通过利用hmm中可观察算子的一种变体,我们证明了条件熵梯度相对于策略参数的几个重要性质,从而实现了策略梯度的高效计算和稳定快速的收敛。我们通过将其应用于随机网格世界环境中的推理问题来证明我们的解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Perception With Initial-State Uncertainty: A Policy Gradient Method
This letter studies the synthesis of an active perception policy that maximizes the information leakage of the initial state in a stochastic system modeled as a hidden Markov model (HMM). Specifically, the emission function of the HMM is controllable with a set of perception or sensor query actions. Given the goal is to infer the initial state from partial observations in the HMM, we use Shannon conditional entropy as the planning objective and develop a novel policy gradient method with convergence guarantees. By leveraging a variant of observable operators in HMMs, we prove several important properties of the gradient of the conditional entropy with respect to the policy parameters, which allow efficient computation of the policy gradient and stable and fast convergence. We demonstrate the effectiveness of our solution by applying it to an inference problem in a stochastic grid world environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信