协同偏好导向的多目标贝叶斯优化:在个性化血浆医疗政策学习中的应用

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Ketong Shao;Ankush Chakrabarty;Ali Mesbah;Diego Romeres
{"title":"协同偏好导向的多目标贝叶斯优化:在个性化血浆医疗政策学习中的应用","authors":"Ketong Shao;Ankush Chakrabarty;Ali Mesbah;Diego Romeres","doi":"10.1109/LCSYS.2024.3521965","DOIUrl":null,"url":null,"abstract":"The design of advanced learning- and optimization-based controllers requires selecting parameters that balance performance objectives and constraints. Bayesian optimization (BO) has proven effective for resource-efficient calibration of such controllers. Preference-guided BO incorporates user preferences to prioritize areas of interest, but it lacks a mechanism for users to specify desired outcomes directly. This letter introduces a user-centric framework for preference-guided BO, leveraging a novel knowledge-gradient based coactive acquisition function that allows users not only to select preferred outcomes but also also propose alternatives to guide exploration. To enable efficient implementation, we approximate the acquisition function, avoiding costly bilevel optimization. The approach is validated for control policy adaptation in personalized plasma medicine, where it outperforms standard preference-guided BO by effectively integrating user feedback to personalize treatment protocol.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3081-3086"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coactive Preference-Guided Multi-Objective Bayesian Optimization: An Application to Policy Learning in Personalized Plasma Medicine\",\"authors\":\"Ketong Shao;Ankush Chakrabarty;Ali Mesbah;Diego Romeres\",\"doi\":\"10.1109/LCSYS.2024.3521965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of advanced learning- and optimization-based controllers requires selecting parameters that balance performance objectives and constraints. Bayesian optimization (BO) has proven effective for resource-efficient calibration of such controllers. Preference-guided BO incorporates user preferences to prioritize areas of interest, but it lacks a mechanism for users to specify desired outcomes directly. This letter introduces a user-centric framework for preference-guided BO, leveraging a novel knowledge-gradient based coactive acquisition function that allows users not only to select preferred outcomes but also also propose alternatives to guide exploration. To enable efficient implementation, we approximate the acquisition function, avoiding costly bilevel optimization. The approach is validated for control policy adaptation in personalized plasma medicine, where it outperforms standard preference-guided BO by effectively integrating user feedback to personalize treatment protocol.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3081-3086\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812946/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10812946/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于高级学习和优化的控制器的设计需要选择平衡性能目标和约束的参数。贝叶斯优化(BO)已被证明是一种有效的资源高效标定方法。偏好导向的BO结合了用户偏好来确定感兴趣领域的优先级,但它缺乏使用户直接指定期望结果的机制。这封信介绍了一个以用户为中心的偏好导向BO框架,利用一种新颖的基于知识梯度的协同获取功能,使用户不仅可以选择首选结果,还可以提出指导探索的替代方案。为了实现高效,我们近似获取函数,避免代价高昂的双层优化。该方法在个性化血浆医学的控制策略适应中得到了验证,通过有效地将用户反馈整合到个性化治疗方案中,它优于标准的偏好导向BO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coactive Preference-Guided Multi-Objective Bayesian Optimization: An Application to Policy Learning in Personalized Plasma Medicine
The design of advanced learning- and optimization-based controllers requires selecting parameters that balance performance objectives and constraints. Bayesian optimization (BO) has proven effective for resource-efficient calibration of such controllers. Preference-guided BO incorporates user preferences to prioritize areas of interest, but it lacks a mechanism for users to specify desired outcomes directly. This letter introduces a user-centric framework for preference-guided BO, leveraging a novel knowledge-gradient based coactive acquisition function that allows users not only to select preferred outcomes but also also propose alternatives to guide exploration. To enable efficient implementation, we approximate the acquisition function, avoiding costly bilevel optimization. The approach is validated for control policy adaptation in personalized plasma medicine, where it outperforms standard preference-guided BO by effectively integrating user feedback to personalize treatment protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信