大规模网络系统中的局部化现象:对脆弱性的影响

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Poorva Shukla;Bassam Bamieh
{"title":"大规模网络系统中的局部化现象:对脆弱性的影响","authors":"Poorva Shukla;Bassam Bamieh","doi":"10.1109/LCSYS.2024.3521432","DOIUrl":null,"url":null,"abstract":"We study phenomena where some eigenvectors of a graph Laplacian are largely confined in small subsets of the graph. These localization phenomena are similar to those generally termed Anderson Localization in the Physics literature, and are related to the complexity of the structure of large graphs in still unexplored ways. Using perturbation analysis and pseudo-spectrum analysis, we explain how the presence of localized eigenvectors gives rise to fragilities (low robustness margins) to unmodeled node or link dynamics. Our analysis is demonstrated by examples of networks with relatively low complexity, but with features that appear to induce eigenvector localization. The implications of this newly-discovered fragility phenomenon are briefly discussed.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3087-3092"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization Phenomena in Large-Scale Networked Systems: Implications for Fragility\",\"authors\":\"Poorva Shukla;Bassam Bamieh\",\"doi\":\"10.1109/LCSYS.2024.3521432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study phenomena where some eigenvectors of a graph Laplacian are largely confined in small subsets of the graph. These localization phenomena are similar to those generally termed Anderson Localization in the Physics literature, and are related to the complexity of the structure of large graphs in still unexplored ways. Using perturbation analysis and pseudo-spectrum analysis, we explain how the presence of localized eigenvectors gives rise to fragilities (low robustness margins) to unmodeled node or link dynamics. Our analysis is demonstrated by examples of networks with relatively low complexity, but with features that appear to induce eigenvector localization. The implications of this newly-discovered fragility phenomenon are briefly discussed.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3087-3092\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812713/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10812713/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了图拉普拉斯算子的一些特征向量在很大程度上被限制在图的小子集中的现象。这些局部化现象类似于物理学文献中通常称为安德森局部化的现象,并且以尚未探索的方式与大型图结构的复杂性有关。使用扰动分析和伪谱分析,我们解释了局部特征向量的存在如何导致未建模节点或链接动力学的脆弱性(低鲁棒性裕度)。我们的分析通过复杂性相对较低的网络示例来证明,但其特征似乎诱导特征向量定位。本文简要讨论了这一新发现的脆弱性现象的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization Phenomena in Large-Scale Networked Systems: Implications for Fragility
We study phenomena where some eigenvectors of a graph Laplacian are largely confined in small subsets of the graph. These localization phenomena are similar to those generally termed Anderson Localization in the Physics literature, and are related to the complexity of the structure of large graphs in still unexplored ways. Using perturbation analysis and pseudo-spectrum analysis, we explain how the presence of localized eigenvectors gives rise to fragilities (low robustness margins) to unmodeled node or link dynamics. Our analysis is demonstrated by examples of networks with relatively low complexity, but with features that appear to induce eigenvector localization. The implications of this newly-discovered fragility phenomenon are briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信