基于逐次过松弛公式的迭代预条件梯度下降算法

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Tianchen Liu;Kushal Chakrabarti;Nikhil Chopra
{"title":"基于逐次过松弛公式的迭代预条件梯度下降算法","authors":"Tianchen Liu;Kushal Chakrabarti;Nikhil Chopra","doi":"10.1109/LCSYS.2024.3521673","DOIUrl":null,"url":null,"abstract":"We devise a novel quasi-Newton algorithm for solving unconstrained convex optimization problems. The proposed algorithm is built on our previous framework of the iteratively preconditioned gradient-descent (IPG) algorithm. IPG utilized Richardson iteration to update a preconditioner matrix that approximates the inverse of the Hessian matrix. In this letter, we substitute the Richardson iteration with a successive over-relaxation (SOR) formulation. The convergence guarantee of the proposed algorithm and its theoretical improvement over vanilla IPG are presented. The algorithm is used in a mobile robot position estimation problem for numerical validation using a moving horizon estimation (MHE) formulation. Compared with IPG, the results demonstrate an improved performance of the proposed algorithm in terms of computational time and the number of iterations needed for convergence, matching our theoretical results.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3105-3110"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Iteratively Preconditioned Gradient-Descent Algorithm via Successive Over-Relaxation Formulation\",\"authors\":\"Tianchen Liu;Kushal Chakrabarti;Nikhil Chopra\",\"doi\":\"10.1109/LCSYS.2024.3521673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We devise a novel quasi-Newton algorithm for solving unconstrained convex optimization problems. The proposed algorithm is built on our previous framework of the iteratively preconditioned gradient-descent (IPG) algorithm. IPG utilized Richardson iteration to update a preconditioner matrix that approximates the inverse of the Hessian matrix. In this letter, we substitute the Richardson iteration with a successive over-relaxation (SOR) formulation. The convergence guarantee of the proposed algorithm and its theoretical improvement over vanilla IPG are presented. The algorithm is used in a mobile robot position estimation problem for numerical validation using a moving horizon estimation (MHE) formulation. Compared with IPG, the results demonstrate an improved performance of the proposed algorithm in terms of computational time and the number of iterations needed for convergence, matching our theoretical results.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3105-3110\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812803/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10812803/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种求解无约束凸优化问题的拟牛顿算法。提出的算法是建立在我们之前的迭代预条件梯度下降(IPG)算法框架之上的。IPG利用Richardson迭代来更新一个近似于Hessian矩阵逆的预条件矩阵。在这封信中,我们用一个连续的过松弛(SOR)公式代替理查森迭代。给出了该算法的收敛性保证和相对于普通IPG算法的理论改进。将该算法应用于移动机器人位置估计问题中,利用移动地平线估计(MHE)公式进行数值验证。与IPG算法相比,本文提出的算法在计算时间和收敛所需的迭代次数方面的性能得到了改善,与理论结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Iteratively Preconditioned Gradient-Descent Algorithm via Successive Over-Relaxation Formulation
We devise a novel quasi-Newton algorithm for solving unconstrained convex optimization problems. The proposed algorithm is built on our previous framework of the iteratively preconditioned gradient-descent (IPG) algorithm. IPG utilized Richardson iteration to update a preconditioner matrix that approximates the inverse of the Hessian matrix. In this letter, we substitute the Richardson iteration with a successive over-relaxation (SOR) formulation. The convergence guarantee of the proposed algorithm and its theoretical improvement over vanilla IPG are presented. The algorithm is used in a mobile robot position estimation problem for numerical validation using a moving horizon estimation (MHE) formulation. Compared with IPG, the results demonstrate an improved performance of the proposed algorithm in terms of computational time and the number of iterations needed for convergence, matching our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信