屏幕引导训练不能捕获目标导向行为:使用上下文信息增量学习从零开始学习肌电控制映射

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Evan Campbell;Ethan Eddy;Xavier Isabel;Scott Bateman;Benoit Gosselin;Ulysse Côté-Allard;Erik Scheme
{"title":"屏幕引导训练不能捕获目标导向行为:使用上下文信息增量学习从零开始学习肌电控制映射","authors":"Evan Campbell;Ethan Eddy;Xavier Isabel;Scott Bateman;Benoit Gosselin;Ulysse Côté-Allard;Erik Scheme","doi":"10.1109/TNSRE.2024.3518059","DOIUrl":null,"url":null,"abstract":"Human-machine interfaces based on myoelectric signals typically use screen-guided training (SGT) for model calibration, but this approach fails to capture realistic user behaviors. This study evaluates a user-in-the-loop context-informed incremental learning (CIIL) framework, comparing SGT, SGT followed by CIIL adaptation (SGT-A), and a novel zero-shot adaptation (ZS-A) CIIL approach that begins adapting with no prior training. Sixteen participants completed a Fitts’ Law targeting task using these control schemes, with performance measured via online throughput and offline classification accuracy. Despite lower offline accuracy, the ZS-A model achieved the highest online throughput (\n<inline-formula> <tex-math>$1.47~\\pm ~0.46$ </tex-math></inline-formula>\n bits/s), significantly outperforming the SGT baseline (\n<inline-formula> <tex-math>$1.15~\\pm ~0.37$ </tex-math></inline-formula>\n bits/s) and reached competitive performance within 200 seconds. To further enhance control performance, a novel adaptive sigmoid-based proportional control mapping was introduced, dynamically adjusting control signals to allow precise control near neutral positions and rapid movements at higher activation levels, better aligning with natural user behaviors. These findings demonstrate that CIIL can surpass traditional SGT methods in online performance and emphasize the value of real-time user-in-the-loop data for developing adaptable and intuitive myoelectric interfaces, with implications for prosthetics, rehabilitation, and telerobotics.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"332-342"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10802919","citationCount":"0","resultStr":"{\"title\":\"Screen Guided Training Does Not Capture Goal-Oriented Behaviors: Learning Myoelectric Control Mappings From Scratch Using Context Informed Incremental Learning\",\"authors\":\"Evan Campbell;Ethan Eddy;Xavier Isabel;Scott Bateman;Benoit Gosselin;Ulysse Côté-Allard;Erik Scheme\",\"doi\":\"10.1109/TNSRE.2024.3518059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-machine interfaces based on myoelectric signals typically use screen-guided training (SGT) for model calibration, but this approach fails to capture realistic user behaviors. This study evaluates a user-in-the-loop context-informed incremental learning (CIIL) framework, comparing SGT, SGT followed by CIIL adaptation (SGT-A), and a novel zero-shot adaptation (ZS-A) CIIL approach that begins adapting with no prior training. Sixteen participants completed a Fitts’ Law targeting task using these control schemes, with performance measured via online throughput and offline classification accuracy. Despite lower offline accuracy, the ZS-A model achieved the highest online throughput (\\n<inline-formula> <tex-math>$1.47~\\\\pm ~0.46$ </tex-math></inline-formula>\\n bits/s), significantly outperforming the SGT baseline (\\n<inline-formula> <tex-math>$1.15~\\\\pm ~0.37$ </tex-math></inline-formula>\\n bits/s) and reached competitive performance within 200 seconds. To further enhance control performance, a novel adaptive sigmoid-based proportional control mapping was introduced, dynamically adjusting control signals to allow precise control near neutral positions and rapid movements at higher activation levels, better aligning with natural user behaviors. These findings demonstrate that CIIL can surpass traditional SGT methods in online performance and emphasize the value of real-time user-in-the-loop data for developing adaptable and intuitive myoelectric interfaces, with implications for prosthetics, rehabilitation, and telerobotics.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"332-342\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10802919\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10802919/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10802919/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于肌电信号的人机界面通常使用屏幕引导训练(SGT)进行模型校准,但这种方法无法捕获真实的用户行为。本研究评估了用户在循环中上下文知情的增量学习(CIIL)框架,比较了SGT, SGT随后的CIIL适应(SGT- a)和一种新的零射击适应(ZS-A) CIIL方法,该方法在没有事先训练的情况下开始适应。16名参与者使用这些控制方案完成了菲茨定律目标任务,通过在线吞吐量和离线分类准确性来衡量性能。尽管离线精度较低,ZS-A模型实现了最高的在线吞吐量($1.47~\pm ~0.46$ bits/s),显著优于SGT基线($1.15~\pm ~0.37$ bits/s),并在200秒内达到了具有竞争力的性能。为了进一步提高控制性能,引入了一种新的自适应基于s型模的比例控制映射,动态调整控制信号,以实现在中性位置附近的精确控制和在更高激活水平下的快速运动,更好地与自然用户行为保持一致。这些发现表明,CIIL在在线性能上可以超越传统的SGT方法,并强调了实时用户在环数据对于开发适应性强、直观的肌电界面的价值,对假肢、康复和远程机器人具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screen Guided Training Does Not Capture Goal-Oriented Behaviors: Learning Myoelectric Control Mappings From Scratch Using Context Informed Incremental Learning
Human-machine interfaces based on myoelectric signals typically use screen-guided training (SGT) for model calibration, but this approach fails to capture realistic user behaviors. This study evaluates a user-in-the-loop context-informed incremental learning (CIIL) framework, comparing SGT, SGT followed by CIIL adaptation (SGT-A), and a novel zero-shot adaptation (ZS-A) CIIL approach that begins adapting with no prior training. Sixteen participants completed a Fitts’ Law targeting task using these control schemes, with performance measured via online throughput and offline classification accuracy. Despite lower offline accuracy, the ZS-A model achieved the highest online throughput ( $1.47~\pm ~0.46$ bits/s), significantly outperforming the SGT baseline ( $1.15~\pm ~0.37$ bits/s) and reached competitive performance within 200 seconds. To further enhance control performance, a novel adaptive sigmoid-based proportional control mapping was introduced, dynamically adjusting control signals to allow precise control near neutral positions and rapid movements at higher activation levels, better aligning with natural user behaviors. These findings demonstrate that CIIL can surpass traditional SGT methods in online performance and emphasize the value of real-time user-in-the-loop data for developing adaptable and intuitive myoelectric interfaces, with implications for prosthetics, rehabilitation, and telerobotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信