元学习增强四旋翼机扰动感知运动规划与控制的MPC

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Dženan Lapandić;Fengze Xie;Christos K. Verginis;Soon-Jo Chung;Dimos V. Dimarogonas;Bo Wahlberg
{"title":"元学习增强四旋翼机扰动感知运动规划与控制的MPC","authors":"Dženan Lapandić;Fengze Xie;Christos K. Verginis;Soon-Jo Chung;Dimos V. Dimarogonas;Bo Wahlberg","doi":"10.1109/LCSYS.2024.3520023","DOIUrl":null,"url":null,"abstract":"A major challenge in autonomous flights is unknown disturbances, which can jeopardize safety and cause collisions, especially in obstacle-rich environments. This letter presents a disturbance-aware motion planning and control framework for autonomous aerial flights. The framework is composed of two key components: a disturbance-aware motion planner and a tracking controller. The motion planner consists of a predictive control scheme and an online-adapted learned disturbance model. The tracking controller, developed using contraction control methods, ensures safety bounds on the quadrotor’s behavior near obstacles with respect to the motion plan. The algorithm is tested in simulations with a quadrotor facing strong crosswind and ground-induced disturbances.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3045-3050"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Learning Augmented MPC for Disturbance-Aware Motion Planning and Control of Quadrotors\",\"authors\":\"Dženan Lapandić;Fengze Xie;Christos K. Verginis;Soon-Jo Chung;Dimos V. Dimarogonas;Bo Wahlberg\",\"doi\":\"10.1109/LCSYS.2024.3520023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major challenge in autonomous flights is unknown disturbances, which can jeopardize safety and cause collisions, especially in obstacle-rich environments. This letter presents a disturbance-aware motion planning and control framework for autonomous aerial flights. The framework is composed of two key components: a disturbance-aware motion planner and a tracking controller. The motion planner consists of a predictive control scheme and an online-adapted learned disturbance model. The tracking controller, developed using contraction control methods, ensures safety bounds on the quadrotor’s behavior near obstacles with respect to the motion plan. The algorithm is tested in simulations with a quadrotor facing strong crosswind and ground-induced disturbances.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3045-3050\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806836/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806836/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自主飞行面临的一个主要挑战是未知干扰,这可能危及安全并导致碰撞,特别是在障碍物丰富的环境中。这封信提出了一个自主飞行的干扰感知运动规划和控制框架。该框架由两个关键部件组成:干扰感知运动规划器和跟踪控制器。该运动规划器由预测控制方案和在线自适应学习扰动模型组成。跟踪控制器,开发使用收缩控制方法,确保安全界限的四旋翼的行为接近障碍物,相对于运动计划。该算法在面对强侧风和地面干扰的四旋翼飞行器上进行了仿真测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Learning Augmented MPC for Disturbance-Aware Motion Planning and Control of Quadrotors
A major challenge in autonomous flights is unknown disturbances, which can jeopardize safety and cause collisions, especially in obstacle-rich environments. This letter presents a disturbance-aware motion planning and control framework for autonomous aerial flights. The framework is composed of two key components: a disturbance-aware motion planner and a tracking controller. The motion planner consists of a predictive control scheme and an online-adapted learned disturbance model. The tracking controller, developed using contraction control methods, ensures safety bounds on the quadrotor’s behavior near obstacles with respect to the motion plan. The algorithm is tested in simulations with a quadrotor facing strong crosswind and ground-induced disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信