基于电化学阻抗谱的200kw燃料电池系统运行工况研究

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Feijie Wang, Dong Zhu, Cunman Zhang
{"title":"基于电化学阻抗谱的200kw燃料电池系统运行工况研究","authors":"Feijie Wang, Dong Zhu, Cunman Zhang","doi":"10.1016/j.electacta.2025.145684","DOIUrl":null,"url":null,"abstract":"To meet the increasing power demand of the application, a 200 kW fuel cell system with an alternating current impedance measuring system was installed on the test bench. The equivalent circuit model (ECM) and the essential equations for distribution of relaxation time (DRT) was been presented. The basic performance and operation parameters were tested using polarization curves. The impedance of the fuel cell was measured in the steady-state variable load condition, and the basic impedance loss of the stack was understood via ECM and DRT analyses. The impedance measurement, ECM, and DRT analyses were conducted by varying the cathode stoichiometric ratio, stack coolant temperature, and shutdown purge time, respectively. Results revealed that the total impedance of the stack decreased with the gradual increase in current density, and the relaxation time function <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B3;&lt;/mi&gt;&lt;mi is=\"true\"&gt;l&lt;/mi&gt;&lt;mi is=\"true\"&gt;n&lt;/mi&gt;&lt;mo is=\"true\"&gt;(&lt;/mo&gt;&lt;mi is=\"true\"&gt;&amp;#x3C4;&lt;/mi&gt;&lt;mo is=\"true\"&gt;)&lt;/mo&gt;&lt;mspace width=\"0.33em\" is=\"true\" /&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 3069 1196.3\" width=\"7.128ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B3\"></use></g><g is=\"true\" transform=\"translate(543,0)\"><use xlink:href=\"#MJMATHI-6C\"></use></g><g is=\"true\" transform=\"translate(842,0)\"><use xlink:href=\"#MJMATHI-6E\"></use></g><g is=\"true\" transform=\"translate(1442,0)\"><use xlink:href=\"#MJMAIN-28\"></use></g><g is=\"true\" transform=\"translate(1832,0)\"><use xlink:href=\"#MJMATHI-3C4\"></use></g><g is=\"true\" transform=\"translate(2349,0)\"><use xlink:href=\"#MJMAIN-29\"></use></g><g is=\"true\"></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">γ</mi><mi is=\"true\">l</mi><mi is=\"true\">n</mi><mo is=\"true\">(</mo><mi is=\"true\">τ</mi><mo is=\"true\">)</mo><mspace is=\"true\" width=\"0.33em\"></mspace></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">γ</mi><mi is=\"true\">l</mi><mi is=\"true\">n</mi><mo is=\"true\">(</mo><mi is=\"true\">τ</mi><mo is=\"true\">)</mo><mspace width=\"0.33em\" is=\"true\"></mspace></mrow></math></script></span>of the fuel cell was approximately 600–620 mΩ cm<sup>2</sup>. When the cathode stoichiometric ratio increased, mass transfer resistance significantly increased, while ohmic resistance (<em>R</em><sub>ohm</sub>), effective charge transfer resistance (<em>R</em><sub>act</sub>), and anode activation impedance and the cathode proton transport impedance (<em>R</em><sub>a</sub>) slightly changed. Moreover, the peak P<sub>1</sub> was significantly decreased, while the peaks P<sub>2</sub>, P<sub>3</sub>, and P<sub>4</sub> were unchanged. The overall impedance of the stack did not vary notably with the increase in the coolant outlet temperature of the stack at low-power operation, while a certain decline could be found at medium and high-power operation. With the increasing purging time, the <em>R</em><sub>ohm</sub> significantly increased from 46.1 to 59.7 mΩ cm<sup>2</sup> due to water content decreasing in the proton exchange membrane during purging. Additionally, <em>R</em><sub>act</sub> increased as the current decreased gradually, and the temperature and humidity in the stack dropped as well, leading to an increase in charge transfer resistance.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"36 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of operating conditions for 200 kW fuel cell system based on electrochemical impedance spectroscopy\",\"authors\":\"Feijie Wang, Dong Zhu, Cunman Zhang\",\"doi\":\"10.1016/j.electacta.2025.145684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the increasing power demand of the application, a 200 kW fuel cell system with an alternating current impedance measuring system was installed on the test bench. The equivalent circuit model (ECM) and the essential equations for distribution of relaxation time (DRT) was been presented. The basic performance and operation parameters were tested using polarization curves. The impedance of the fuel cell was measured in the steady-state variable load condition, and the basic impedance loss of the stack was understood via ECM and DRT analyses. The impedance measurement, ECM, and DRT analyses were conducted by varying the cathode stoichiometric ratio, stack coolant temperature, and shutdown purge time, respectively. Results revealed that the total impedance of the stack decreased with the gradual increase in current density, and the relaxation time function <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x3B3;&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;l&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;n&lt;/mi&gt;&lt;mo is=\\\"true\\\"&gt;(&lt;/mo&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x3C4;&lt;/mi&gt;&lt;mo is=\\\"true\\\"&gt;)&lt;/mo&gt;&lt;mspace width=\\\"0.33em\\\" is=\\\"true\\\" /&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -846.5 3069 1196.3\\\" width=\\\"7.128ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3B3\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(543,0)\\\"><use xlink:href=\\\"#MJMATHI-6C\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(842,0)\\\"><use xlink:href=\\\"#MJMATHI-6E\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1442,0)\\\"><use xlink:href=\\\"#MJMAIN-28\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1832,0)\\\"><use xlink:href=\\\"#MJMATHI-3C4\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(2349,0)\\\"><use xlink:href=\\\"#MJMAIN-29\\\"></use></g><g is=\\\"true\\\"></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">γ</mi><mi is=\\\"true\\\">l</mi><mi is=\\\"true\\\">n</mi><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">τ</mi><mo is=\\\"true\\\">)</mo><mspace is=\\\"true\\\" width=\\\"0.33em\\\"></mspace></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">γ</mi><mi is=\\\"true\\\">l</mi><mi is=\\\"true\\\">n</mi><mo is=\\\"true\\\">(</mo><mi is=\\\"true\\\">τ</mi><mo is=\\\"true\\\">)</mo><mspace width=\\\"0.33em\\\" is=\\\"true\\\"></mspace></mrow></math></script></span>of the fuel cell was approximately 600–620 mΩ cm<sup>2</sup>. When the cathode stoichiometric ratio increased, mass transfer resistance significantly increased, while ohmic resistance (<em>R</em><sub>ohm</sub>), effective charge transfer resistance (<em>R</em><sub>act</sub>), and anode activation impedance and the cathode proton transport impedance (<em>R</em><sub>a</sub>) slightly changed. Moreover, the peak P<sub>1</sub> was significantly decreased, while the peaks P<sub>2</sub>, P<sub>3</sub>, and P<sub>4</sub> were unchanged. The overall impedance of the stack did not vary notably with the increase in the coolant outlet temperature of the stack at low-power operation, while a certain decline could be found at medium and high-power operation. With the increasing purging time, the <em>R</em><sub>ohm</sub> significantly increased from 46.1 to 59.7 mΩ cm<sup>2</sup> due to water content decreasing in the proton exchange membrane during purging. Additionally, <em>R</em><sub>act</sub> increased as the current decreased gradually, and the temperature and humidity in the stack dropped as well, leading to an increase in charge transfer resistance.\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.electacta.2025.145684\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.145684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

为了满足日益增长的功率需求,在试验台安装了200 kW的燃料电池系统和交流阻抗测量系统。给出了等效电路模型(ECM)和松弛时间(DRT)分布的基本方程。利用极化曲线对其基本性能和工作参数进行了测试。在稳态变负载条件下测量了燃料电池的阻抗,并通过ECM和DRT分析了解了燃料电池堆的基本阻抗损失。阻抗测量、ECM和DRT分析分别通过改变阴极化学计量比、堆冷却剂温度和停机吹扫时间进行。结果表明,随着电流密度的逐渐增大,堆的总阻抗减小,燃料电池的弛豫时间函数γln(τ)γln(τ)约为600 ~ 620 mΩ cm2。当阴极化学计量比增大时,传质电阻显著增大,而欧姆电阻(Rohm)、有效电荷转移电阻(Ract)、阳极活化阻抗和阴极质子输运阻抗(Ra)变化不大。P1峰明显降低,P2、P3、P4峰不变。在低功率工况下,随着冷却剂出口温度的升高,堆的总阻抗变化不明显,而在中、大功率工况下,堆的总阻抗有一定的下降。随着清洗时间的增加,由于质子交换膜中水分的减少,Rohm从46.1显著增加到59.7 mΩ cm2。另外,Ract随着电流的逐渐减小而增大,堆内温度和湿度也随之下降,导致电荷传递电阻增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of operating conditions for 200 kW fuel cell system based on electrochemical impedance spectroscopy
To meet the increasing power demand of the application, a 200 kW fuel cell system with an alternating current impedance measuring system was installed on the test bench. The equivalent circuit model (ECM) and the essential equations for distribution of relaxation time (DRT) was been presented. The basic performance and operation parameters were tested using polarization curves. The impedance of the fuel cell was measured in the steady-state variable load condition, and the basic impedance loss of the stack was understood via ECM and DRT analyses. The impedance measurement, ECM, and DRT analyses were conducted by varying the cathode stoichiometric ratio, stack coolant temperature, and shutdown purge time, respectively. Results revealed that the total impedance of the stack decreased with the gradual increase in current density, and the relaxation time function γln(τ)of the fuel cell was approximately 600–620 mΩ cm2. When the cathode stoichiometric ratio increased, mass transfer resistance significantly increased, while ohmic resistance (Rohm), effective charge transfer resistance (Ract), and anode activation impedance and the cathode proton transport impedance (Ra) slightly changed. Moreover, the peak P1 was significantly decreased, while the peaks P2, P3, and P4 were unchanged. The overall impedance of the stack did not vary notably with the increase in the coolant outlet temperature of the stack at low-power operation, while a certain decline could be found at medium and high-power operation. With the increasing purging time, the Rohm significantly increased from 46.1 to 59.7 mΩ cm2 due to water content decreasing in the proton exchange membrane during purging. Additionally, Ract increased as the current decreased gradually, and the temperature and humidity in the stack dropped as well, leading to an increase in charge transfer resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信