下一代固态电池用钙基聚合物电解质的环境评价与导电性能

IF 10 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Esperanza Batuecas , Jean-Yves Sanchez , Alejandro Várez , Cynthia S. Martínez-Cisneros
{"title":"下一代固态电池用钙基聚合物电解质的环境评价与导电性能","authors":"Esperanza Batuecas ,&nbsp;Jean-Yves Sanchez ,&nbsp;Alejandro Várez ,&nbsp;Cynthia S. Martínez-Cisneros","doi":"10.1016/j.jclepro.2025.144710","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive life cycle assessment (LCA) of calcium-based polymer electrolytes, aiming to advance sustainable solid-state post-lithium battery technologies. Despite calcium-based solid-state batteries offer safer and more reliable energy storage alternatives, research into their environmental and electrochemical performance remains limited compared to lithium-ion systems. In this work, three polymer electrolytes, based on a cross-linked polymer backbone doped with calcium salts (Ca (TFSI)<sub>2</sub>, Ca(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>, and CaI<sub>2</sub>), are studied through LCA and characterized in terms of electrochemical and thermal properties. Notably, it is observed that the salts exhibit a significantly higher contribution to environmental impacts compared to the polymer. The LCA identifies CaI<sub>2</sub> as the most environmentally favorable, with climate change emissions of 8.01·10<sup>−5</sup> kg CO<sub>2</sub> equivalent, particulate matter disease incidence of 3.12·10<sup>−12</sup> cases per kg PM<sub>2.5</sub>, and negligible ozone depletion impacts (1.27·10<sup>−6</sup> kg CFC11 eq). Although Ca (TFSI)<sub>2</sub> shows higher ozone depletion impact (2.68·10<sup>−4</sup> kg CFC11 eq) it demonstrates superior ionic conductivity, achieving 0.09 mS⋅cm<sup>−1</sup> at 20 °C and 0.4 mS⋅cm<sup>−1</sup> at 90 °C. Moreover, differential scanning calorimetry confirms the fully amorphous structure of all electrolytes, with glass transition temperatures ranging from −19.61 °C (Ca (TFSI)₂) to −38.7 °C (CaI₂), which ionic conductivity at room temperature. These findings highlight a critical trade-off between environmental impact and electrochemical performance, providing actionable insights for the design of safer, more sustainable energy storage systems.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"489 ","pages":"Article 144710"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental assessment and conductivity performance of calcium-based polymer electrolytes for the next generation of solid-state batteries\",\"authors\":\"Esperanza Batuecas ,&nbsp;Jean-Yves Sanchez ,&nbsp;Alejandro Várez ,&nbsp;Cynthia S. Martínez-Cisneros\",\"doi\":\"10.1016/j.jclepro.2025.144710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comprehensive life cycle assessment (LCA) of calcium-based polymer electrolytes, aiming to advance sustainable solid-state post-lithium battery technologies. Despite calcium-based solid-state batteries offer safer and more reliable energy storage alternatives, research into their environmental and electrochemical performance remains limited compared to lithium-ion systems. In this work, three polymer electrolytes, based on a cross-linked polymer backbone doped with calcium salts (Ca (TFSI)<sub>2</sub>, Ca(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>, and CaI<sub>2</sub>), are studied through LCA and characterized in terms of electrochemical and thermal properties. Notably, it is observed that the salts exhibit a significantly higher contribution to environmental impacts compared to the polymer. The LCA identifies CaI<sub>2</sub> as the most environmentally favorable, with climate change emissions of 8.01·10<sup>−5</sup> kg CO<sub>2</sub> equivalent, particulate matter disease incidence of 3.12·10<sup>−12</sup> cases per kg PM<sub>2.5</sub>, and negligible ozone depletion impacts (1.27·10<sup>−6</sup> kg CFC11 eq). Although Ca (TFSI)<sub>2</sub> shows higher ozone depletion impact (2.68·10<sup>−4</sup> kg CFC11 eq) it demonstrates superior ionic conductivity, achieving 0.09 mS⋅cm<sup>−1</sup> at 20 °C and 0.4 mS⋅cm<sup>−1</sup> at 90 °C. Moreover, differential scanning calorimetry confirms the fully amorphous structure of all electrolytes, with glass transition temperatures ranging from −19.61 °C (Ca (TFSI)₂) to −38.7 °C (CaI₂), which ionic conductivity at room temperature. These findings highlight a critical trade-off between environmental impact and electrochemical performance, providing actionable insights for the design of safer, more sustainable energy storage systems.</div></div>\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":\"489 \",\"pages\":\"Article 144710\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959652625000605\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652625000605","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种钙基聚合物电解质的全面生命周期评估(LCA),旨在推进可持续的固态后锂电池技术。尽管钙基固态电池提供了更安全、更可靠的储能替代方案,但与锂离子系统相比,对其环境和电化学性能的研究仍然有限。本文研究了三种基于掺杂钙盐的交联聚合物骨架(Ca(TFSI)2、Ca(CF3SO3)2和CaI2)的聚合物电解质,并对其电化学和热性能进行了表征。值得注意的是,与聚合物相比,盐对环境影响的贡献要大得多。LCA确定CaI2是最有利于环境的,其气候变化排放量为8.01·10-5千克二氧化碳当量,颗粒物疾病发病率为每千克PM2.5 3.12·10-12例,臭氧消耗影响可忽略不计(1.27·10-6千克CFC11当量)。虽然Ca(TFSI)2对臭氧消耗的影响较大(2.68·10-4 kg CFC11 eq),但其离子电导率较高,在20°C和90°C时分别达到0.09 mS⋅cm-1和0.4 mS⋅cm-1。此外,差示扫描量热法证实了所有电解质的完全无定形结构,玻璃化转变温度范围为-19.61°C (Ca(TFSI) 2)至-38.7°C (CaI 2),室温下离子电导率。这些发现强调了环境影响与电化学性能之间的关键权衡,为设计更安全、更可持续的储能系统提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental assessment and conductivity performance of calcium-based polymer electrolytes for the next generation of solid-state batteries
This study presents a comprehensive life cycle assessment (LCA) of calcium-based polymer electrolytes, aiming to advance sustainable solid-state post-lithium battery technologies. Despite calcium-based solid-state batteries offer safer and more reliable energy storage alternatives, research into their environmental and electrochemical performance remains limited compared to lithium-ion systems. In this work, three polymer electrolytes, based on a cross-linked polymer backbone doped with calcium salts (Ca (TFSI)2, Ca(CF3SO3)2, and CaI2), are studied through LCA and characterized in terms of electrochemical and thermal properties. Notably, it is observed that the salts exhibit a significantly higher contribution to environmental impacts compared to the polymer. The LCA identifies CaI2 as the most environmentally favorable, with climate change emissions of 8.01·10−5 kg CO2 equivalent, particulate matter disease incidence of 3.12·10−12 cases per kg PM2.5, and negligible ozone depletion impacts (1.27·10−6 kg CFC11 eq). Although Ca (TFSI)2 shows higher ozone depletion impact (2.68·10−4 kg CFC11 eq) it demonstrates superior ionic conductivity, achieving 0.09 mS⋅cm−1 at 20 °C and 0.4 mS⋅cm−1 at 90 °C. Moreover, differential scanning calorimetry confirms the fully amorphous structure of all electrolytes, with glass transition temperatures ranging from −19.61 °C (Ca (TFSI)₂) to −38.7 °C (CaI₂), which ionic conductivity at room temperature. These findings highlight a critical trade-off between environmental impact and electrochemical performance, providing actionable insights for the design of safer, more sustainable energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信