短通信:通过下调miR-455-5p上调缺氧/再氧诱导的Shc3,抑制滋养细胞侵袭,并与子痫前期胎盘炎症和血管生成有关。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-01-10 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0314544
Hui-Zhi Gong, Jing Guan, Ying-Zi Pan, Hong-Juan Ding, Ai-Wu Shi, Ning Gu
{"title":"短通信:通过下调miR-455-5p上调缺氧/再氧诱导的Shc3,抑制滋养细胞侵袭,并与子痫前期胎盘炎症和血管生成有关。","authors":"Hui-Zhi Gong, Jing Guan, Ying-Zi Pan, Hong-Juan Ding, Ai-Wu Shi, Ning Gu","doi":"10.1371/journal.pone.0314544","DOIUrl":null,"url":null,"abstract":"<p><p>Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known. Combining cell and molecular biology methods, we provide evidence of the function and mechanism of miR-455-5p action, and identify its potential target, Shc3, in PE. In vitro, when miR-455-5p was overexpressed in HTR-8/SVneo cells they migrated and invaded more rapidly under hypoxia/reoxygenation (H/R) than in either hypoxic or normoxic conditions. In contrast, apoptosis of HTR-8/SVneo was reduced in H/R. Shc3 was identified as a direct downstream target gene of miR-455-5p. Overexpression of Shc3 reversed the effect of miR-455-5p, promoting apoptosis and suppressing invasion and migration of HTR-8/SVneo under H/R. Shc3 was highly expressed in H/R, but its level was reduced in isolated hypoxic or normoxic environments. Furthermore, we showed Shc3 overexpression is involved in placental inflammation and angiogenesis inhibition. Finally, we showed that the downregulation of miR-455-5p in PE contributes to increased Shc3 in extravillous trophoblasts, thereby limiting extravillous trophoblast cell invasion. Elevated Shc3 is associated with placental inflammation and angiogenesis inhibition. Thus Shc3 serves as a potential biomarker for PE diagnosis and treatment.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0314544"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723625/pdf/","citationCount":"0","resultStr":"{\"title\":\"Short communication: Upregulation of hypoxia/reoxygenation-induced Shc3 by downregulated miR-455-5p, suppresses trophoblast invasion and is associated with placental inflammation and angiogenesis in preeclampsia.\",\"authors\":\"Hui-Zhi Gong, Jing Guan, Ying-Zi Pan, Hong-Juan Ding, Ai-Wu Shi, Ning Gu\",\"doi\":\"10.1371/journal.pone.0314544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known. Combining cell and molecular biology methods, we provide evidence of the function and mechanism of miR-455-5p action, and identify its potential target, Shc3, in PE. In vitro, when miR-455-5p was overexpressed in HTR-8/SVneo cells they migrated and invaded more rapidly under hypoxia/reoxygenation (H/R) than in either hypoxic or normoxic conditions. In contrast, apoptosis of HTR-8/SVneo was reduced in H/R. Shc3 was identified as a direct downstream target gene of miR-455-5p. Overexpression of Shc3 reversed the effect of miR-455-5p, promoting apoptosis and suppressing invasion and migration of HTR-8/SVneo under H/R. Shc3 was highly expressed in H/R, but its level was reduced in isolated hypoxic or normoxic environments. Furthermore, we showed Shc3 overexpression is involved in placental inflammation and angiogenesis inhibition. Finally, we showed that the downregulation of miR-455-5p in PE contributes to increased Shc3 in extravillous trophoblasts, thereby limiting extravillous trophoblast cell invasion. Elevated Shc3 is associated with placental inflammation and angiogenesis inhibition. Thus Shc3 serves as a potential biomarker for PE diagnosis and treatment.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 1\",\"pages\":\"e0314544\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723625/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0314544\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0314544","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

子痫前期的特点是外滋养层细胞侵袭不足,是胚胎发育过程中外滋养层细胞无法适应宫内环境变化的结果。特定的mirna与子痫前期(PE)的发展有关。miR-455-5p在PE中低水平存在,但其作用尚不清楚。结合细胞生物学和分子生物学方法,我们提供了miR-455-5p作用的功能和机制的证据,并确定了其在PE中的潜在靶点Shc3。在体外,当miR-455-5p在HTR-8/SVneo细胞中过表达时,它们在缺氧/再氧化(H/R)条件下的迁移和侵袭速度比在缺氧或常氧条件下更快。H/R组HTR-8/SVneo细胞凋亡减少。Shc3被鉴定为miR-455-5p的直接下游靶基因。Shc3的过表达逆转了miR-455-5p的作用,促进H/R下HTR-8/SVneo的凋亡,抑制其侵袭和迁移。Shc3在H/R中高表达,但在缺氧或常氧环境中表达水平降低。此外,我们发现Shc3过表达参与胎盘炎症和血管生成抑制。最后,我们发现PE中miR-455-5p的下调有助于胞外滋养细胞中Shc3的增加,从而限制胞外滋养细胞的侵袭。Shc3升高与胎盘炎症和血管生成抑制有关。因此,Shc3可作为PE诊断和治疗的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Short communication: Upregulation of hypoxia/reoxygenation-induced Shc3 by downregulated miR-455-5p, suppresses trophoblast invasion and is associated with placental inflammation and angiogenesis in preeclampsia.

Short communication: Upregulation of hypoxia/reoxygenation-induced Shc3 by downregulated miR-455-5p, suppresses trophoblast invasion and is associated with placental inflammation and angiogenesis in preeclampsia.

Short communication: Upregulation of hypoxia/reoxygenation-induced Shc3 by downregulated miR-455-5p, suppresses trophoblast invasion and is associated with placental inflammation and angiogenesis in preeclampsia.

Short communication: Upregulation of hypoxia/reoxygenation-induced Shc3 by downregulated miR-455-5p, suppresses trophoblast invasion and is associated with placental inflammation and angiogenesis in preeclampsia.

Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known. Combining cell and molecular biology methods, we provide evidence of the function and mechanism of miR-455-5p action, and identify its potential target, Shc3, in PE. In vitro, when miR-455-5p was overexpressed in HTR-8/SVneo cells they migrated and invaded more rapidly under hypoxia/reoxygenation (H/R) than in either hypoxic or normoxic conditions. In contrast, apoptosis of HTR-8/SVneo was reduced in H/R. Shc3 was identified as a direct downstream target gene of miR-455-5p. Overexpression of Shc3 reversed the effect of miR-455-5p, promoting apoptosis and suppressing invasion and migration of HTR-8/SVneo under H/R. Shc3 was highly expressed in H/R, but its level was reduced in isolated hypoxic or normoxic environments. Furthermore, we showed Shc3 overexpression is involved in placental inflammation and angiogenesis inhibition. Finally, we showed that the downregulation of miR-455-5p in PE contributes to increased Shc3 in extravillous trophoblasts, thereby limiting extravillous trophoblast cell invasion. Elevated Shc3 is associated with placental inflammation and angiogenesis inhibition. Thus Shc3 serves as a potential biomarker for PE diagnosis and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信