{"title":"金黄色葡萄球菌耐药性的实验室适应性进化机制","authors":"Shiwei Ma, Yufan Xu, Juanjuan Ma, Dan Luo, Zixin Huang, Longlong Wang, Weile Xie, Zhen Luo, Huanhuan Zhang, Jijie Jiang, Yaozhong Jin, Jianming Zhang, Jianguo Zhu, Zhe Wang","doi":"10.1007/s00284-024-03980-7","DOIUrl":null,"url":null,"abstract":"<p><p>Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria. To identify mutations that confer resistance to anti-S. aureus drugs, we established a laboratory-based adaptive evolution system and performed 10 rounds of evolution experiments against 15 clinically used antibiotics. We discovered a panel of known and novel resistance-associated sites after performing whole-genome sequencing. Furthermore, we found that the resistance evolved at distinct rates. For example, streptomycin, rifampicin, fusidic acid and novobiocin all developed significant resistance quickly in the second round of evolution. Intriguingly, the cross-resistance experiment reveals that nearly all drug-resistant strains have varying degrees of increased sensitivity to fusidic acid, pointing to a novel approach to battle AMR. In addition, the in silico docking analysis shows that the evolved mutants affect the interaction of rifampcin-rpoB, as well as the novobiocin-gyrB. Moreover, for the genes we got in the laboratory evolution, mutant genes of clinical isolates of human had significant differences from the environmental isolates and animal isolates. We believe that the strategy and data set in this research will be helpful for battling AMR issue of S. aureus, and adaptable to other pathogenic microbes.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 1","pages":"46"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Staphylococcus aureus Antibiotics Resistance Revealed by Adaptive Laboratory Evolution.\",\"authors\":\"Shiwei Ma, Yufan Xu, Juanjuan Ma, Dan Luo, Zixin Huang, Longlong Wang, Weile Xie, Zhen Luo, Huanhuan Zhang, Jijie Jiang, Yaozhong Jin, Jianming Zhang, Jianguo Zhu, Zhe Wang\",\"doi\":\"10.1007/s00284-024-03980-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria. To identify mutations that confer resistance to anti-S. aureus drugs, we established a laboratory-based adaptive evolution system and performed 10 rounds of evolution experiments against 15 clinically used antibiotics. We discovered a panel of known and novel resistance-associated sites after performing whole-genome sequencing. Furthermore, we found that the resistance evolved at distinct rates. For example, streptomycin, rifampicin, fusidic acid and novobiocin all developed significant resistance quickly in the second round of evolution. Intriguingly, the cross-resistance experiment reveals that nearly all drug-resistant strains have varying degrees of increased sensitivity to fusidic acid, pointing to a novel approach to battle AMR. In addition, the in silico docking analysis shows that the evolved mutants affect the interaction of rifampcin-rpoB, as well as the novobiocin-gyrB. Moreover, for the genes we got in the laboratory evolution, mutant genes of clinical isolates of human had significant differences from the environmental isolates and animal isolates. We believe that the strategy and data set in this research will be helpful for battling AMR issue of S. aureus, and adaptable to other pathogenic microbes.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 1\",\"pages\":\"46\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-024-03980-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03980-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Mechanisms of Staphylococcus aureus Antibiotics Resistance Revealed by Adaptive Laboratory Evolution.
Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria. To identify mutations that confer resistance to anti-S. aureus drugs, we established a laboratory-based adaptive evolution system and performed 10 rounds of evolution experiments against 15 clinically used antibiotics. We discovered a panel of known and novel resistance-associated sites after performing whole-genome sequencing. Furthermore, we found that the resistance evolved at distinct rates. For example, streptomycin, rifampicin, fusidic acid and novobiocin all developed significant resistance quickly in the second round of evolution. Intriguingly, the cross-resistance experiment reveals that nearly all drug-resistant strains have varying degrees of increased sensitivity to fusidic acid, pointing to a novel approach to battle AMR. In addition, the in silico docking analysis shows that the evolved mutants affect the interaction of rifampcin-rpoB, as well as the novobiocin-gyrB. Moreover, for the genes we got in the laboratory evolution, mutant genes of clinical isolates of human had significant differences from the environmental isolates and animal isolates. We believe that the strategy and data set in this research will be helpful for battling AMR issue of S. aureus, and adaptable to other pathogenic microbes.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.