Jingan Wang, Yi Sun, Yuting Yang, Cheng Zhang, Weiqiang Zheng, Chen Wang, Wei Zhang, Lianqun Zhou, Hui Yu, Jinghong Li
{"title":"基于深度学习的等离子体显微镜的精确尺寸和碰撞检测。","authors":"Jingan Wang, Yi Sun, Yuting Yang, Cheng Zhang, Weiqiang Zheng, Chen Wang, Wei Zhang, Lianqun Zhou, Hui Yu, Jinghong Li","doi":"10.1002/advs.202407432","DOIUrl":null,"url":null,"abstract":"<p>Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles. Image sequences are recorded by the state-of-the-art plasmonic microscopy during single nanoparticle collision onto the sensor surface. Deep-SM can enhance signal detection and suppresses noise by leveraging spatio-temporal correlations of the unique signal and noise characteristics in plasmonic microscopy image sequences. Deep-SM can provide significant scattering signal enhancement and noise reduction in dynamic imaging of biological nanoparticles as small as 10 nm, as well as the collision detection of metallic nanoparticle electrochemistry and quantum coupling with plasmonic microscopy. The high sensitivity and simplicity make this approach promising for routine use in nanoparticle analysis across diverse scientific fields.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 9","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202407432","citationCount":"0","resultStr":"{\"title\":\"Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy\",\"authors\":\"Jingan Wang, Yi Sun, Yuting Yang, Cheng Zhang, Weiqiang Zheng, Chen Wang, Wei Zhang, Lianqun Zhou, Hui Yu, Jinghong Li\",\"doi\":\"10.1002/advs.202407432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles. Image sequences are recorded by the state-of-the-art plasmonic microscopy during single nanoparticle collision onto the sensor surface. Deep-SM can enhance signal detection and suppresses noise by leveraging spatio-temporal correlations of the unique signal and noise characteristics in plasmonic microscopy image sequences. Deep-SM can provide significant scattering signal enhancement and noise reduction in dynamic imaging of biological nanoparticles as small as 10 nm, as well as the collision detection of metallic nanoparticle electrochemistry and quantum coupling with plasmonic microscopy. The high sensitivity and simplicity make this approach promising for routine use in nanoparticle analysis across diverse scientific fields.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202407432\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202407432\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202407432","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Precise Sizing and Collision Detection of Functional Nanoparticles by Deep Learning Empowered Plasmonic Microscopy
Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles. Image sequences are recorded by the state-of-the-art plasmonic microscopy during single nanoparticle collision onto the sensor surface. Deep-SM can enhance signal detection and suppresses noise by leveraging spatio-temporal correlations of the unique signal and noise characteristics in plasmonic microscopy image sequences. Deep-SM can provide significant scattering signal enhancement and noise reduction in dynamic imaging of biological nanoparticles as small as 10 nm, as well as the collision detection of metallic nanoparticle electrochemistry and quantum coupling with plasmonic microscopy. The high sensitivity and simplicity make this approach promising for routine use in nanoparticle analysis across diverse scientific fields.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.