基于m算法的空间调制低复杂度近最优解调

IF 5.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jian Zheng;Yutai Sun;Huayi Zhou;Chuan Zhang
{"title":"基于m算法的空间调制低复杂度近最优解调","authors":"Jian Zheng;Yutai Sun;Huayi Zhou;Chuan Zhang","doi":"10.1109/LWC.2024.3486207","DOIUrl":null,"url":null,"abstract":"Spatial modulation (SM), renowned for its high energy efficiency, stands as a pivotal massive MIMO transmission technique. Leveraging the parallel processing capability and superior error rate performance, the M-algorithm to maximum likelihood (MML) algorithm has emerged as a competitive demodulation method for SM systems. In MML, judicious configuration of layer widths can effectively diminish complexity. Nevertheless, existing literature, to the best of our knowledge, relies on empirical settings for layer widths, lacking a formal optimization strategy. In this letter, we propose a layer width optimization algorithm based on mathematical analysis and Monte Carlo simulations. Numerical results have demonstrated that the MML algorithm coupled with our proposed layer width configuration method yields the symbol vector error rate (SVER) comparable to the state-of-the-art optimal demodulation, while achieving a noteworthy complexity reduction.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"14 3","pages":"571-575"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Complexity Near-Optimal Demodulation for Spatial Modulation Based on M-Algorithm\",\"authors\":\"Jian Zheng;Yutai Sun;Huayi Zhou;Chuan Zhang\",\"doi\":\"10.1109/LWC.2024.3486207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial modulation (SM), renowned for its high energy efficiency, stands as a pivotal massive MIMO transmission technique. Leveraging the parallel processing capability and superior error rate performance, the M-algorithm to maximum likelihood (MML) algorithm has emerged as a competitive demodulation method for SM systems. In MML, judicious configuration of layer widths can effectively diminish complexity. Nevertheless, existing literature, to the best of our knowledge, relies on empirical settings for layer widths, lacking a formal optimization strategy. In this letter, we propose a layer width optimization algorithm based on mathematical analysis and Monte Carlo simulations. Numerical results have demonstrated that the MML algorithm coupled with our proposed layer width configuration method yields the symbol vector error rate (SVER) comparable to the state-of-the-art optimal demodulation, while achieving a noteworthy complexity reduction.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"14 3\",\"pages\":\"571-575\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10836948/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836948/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

空间调制(SM)以其高能效而闻名,是一种关键的大规模MIMO传输技术。利用并行处理能力和优越的误码率性能,m -算法到最大似然(MML)算法已成为SM系统的一种有竞争力的解调方法。在MML中,明智地配置层宽度可以有效地降低复杂性。然而,据我们所知,现有文献依赖于层宽度的经验设置,缺乏正式的优化策略。在这封信中,我们提出了一种基于数学分析和蒙特卡罗模拟的层宽度优化算法。数值结果表明,MML算法与我们提出的层宽度配置方法相结合,产生的符号向量错误率(SVER)可与最先进的最优解调相媲美,同时显著降低了复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Complexity Near-Optimal Demodulation for Spatial Modulation Based on M-Algorithm
Spatial modulation (SM), renowned for its high energy efficiency, stands as a pivotal massive MIMO transmission technique. Leveraging the parallel processing capability and superior error rate performance, the M-algorithm to maximum likelihood (MML) algorithm has emerged as a competitive demodulation method for SM systems. In MML, judicious configuration of layer widths can effectively diminish complexity. Nevertheless, existing literature, to the best of our knowledge, relies on empirical settings for layer widths, lacking a formal optimization strategy. In this letter, we propose a layer width optimization algorithm based on mathematical analysis and Monte Carlo simulations. Numerical results have demonstrated that the MML algorithm coupled with our proposed layer width configuration method yields the symbol vector error rate (SVER) comparable to the state-of-the-art optimal demodulation, while achieving a noteworthy complexity reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信