{"title":"番茄m6A去甲基化酶SlALKBH2的氧化还原修饰调控果实成熟","authors":"Leilei Zhou, Guangtong Gao, Renkun Tang, Jinying Liu, Yuying Wang, Zhenchang Liang, Shiping Tian, Guozheng Qin","doi":"10.1038/s41477-024-01893-8","DOIUrl":null,"url":null,"abstract":"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) functions as a critical signalling molecule in controlling multiple biological processes. How H<sub>2</sub>O<sub>2</sub> signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an m<sup>6</sup>A demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by H<sub>2</sub>O<sub>2</sub>, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process. The oxidation of SlALKBH2 promotes protein stability and facilitates its function towards the target transcripts including the pivotal ripening gene <i>SlDML2</i> encoding a DNA demethylase. Furthermore, we demonstrate that the thioredoxin reductase SlNTRC interacts with SlALKBH2 and catalyses its reduction, thereby modulating m<sup>6</sup>A levels and fruit ripening. Our study establishes a molecular link between H<sub>2</sub>O<sub>2</sub> and m<sup>6</sup>A methylation and highlights the importance of redox regulation of m<sup>6</sup>A modifiers in controlling fruit ripening.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"22 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox modification of m6A demethylase SlALKBH2 in tomato regulates fruit ripening\",\"authors\":\"Leilei Zhou, Guangtong Gao, Renkun Tang, Jinying Liu, Yuying Wang, Zhenchang Liang, Shiping Tian, Guozheng Qin\",\"doi\":\"10.1038/s41477-024-01893-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) functions as a critical signalling molecule in controlling multiple biological processes. How H<sub>2</sub>O<sub>2</sub> signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an m<sup>6</sup>A demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by H<sub>2</sub>O<sub>2</sub>, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process. The oxidation of SlALKBH2 promotes protein stability and facilitates its function towards the target transcripts including the pivotal ripening gene <i>SlDML2</i> encoding a DNA demethylase. Furthermore, we demonstrate that the thioredoxin reductase SlNTRC interacts with SlALKBH2 and catalyses its reduction, thereby modulating m<sup>6</sup>A levels and fruit ripening. Our study establishes a molecular link between H<sub>2</sub>O<sub>2</sub> and m<sup>6</sup>A methylation and highlights the importance of redox regulation of m<sup>6</sup>A modifiers in controlling fruit ripening.</p>\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41477-024-01893-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-024-01893-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Redox modification of m6A demethylase SlALKBH2 in tomato regulates fruit ripening
Hydrogen peroxide (H2O2) functions as a critical signalling molecule in controlling multiple biological processes. How H2O2 signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an m6A demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by H2O2, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process. The oxidation of SlALKBH2 promotes protein stability and facilitates its function towards the target transcripts including the pivotal ripening gene SlDML2 encoding a DNA demethylase. Furthermore, we demonstrate that the thioredoxin reductase SlNTRC interacts with SlALKBH2 and catalyses its reduction, thereby modulating m6A levels and fruit ripening. Our study establishes a molecular link between H2O2 and m6A methylation and highlights the importance of redox regulation of m6A modifiers in controlling fruit ripening.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.