超分辨率光学波动成像

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Samrat Basak, Alexey Chizhik, José Ignacio Gallea, Ivan Gligonov, Ingo Gregor, Oleksii Nevskyi, Niels Radmacher, Roman Tsukanov, Jörg Enderlein
{"title":"超分辨率光学波动成像","authors":"Samrat Basak, Alexey Chizhik, José Ignacio Gallea, Ivan Gligonov, Ingo Gregor, Oleksii Nevskyi, Niels Radmacher, Roman Tsukanov, Jörg Enderlein","doi":"10.1038/s41566-024-01571-3","DOIUrl":null,"url":null,"abstract":"We present a comprehensive review of super-resolution optical fluctuation imaging (SOFI), a robust technique that leverages temporal fluctuations in fluorescence intensity to achieve super-resolution imaging without the need for single-molecule localization. The Review starts with a historical overview of super-resolution microscopy techniques, and then focuses on SOFI’s core principle—the analysis of intensity fluctuations using cumulants to improve spatial resolution. The paper discusses technical challenges, such as photobleaching, blinking kinetics and pixel size limitations, as well as proposing solutions like Fourier upsampling and balanced SOFI to mitigate these issues. Additionally, we discuss potential advancements in the field, including the integration of SOFI with other super-resolution modalities like structured illumination microscopy and image scanning microscopy, and the application of SOFI in cryo-fluorescence microscopy and quantum emitter-based imaging. This paper aims to serve as an essential resource for researchers interested in utilizing SOFI for high-resolution imaging in diverse biological applications. The authors present a review of super-resolution optical fluctuation imaging (SOFI), including its core working principle, recent advances and remaining challenges.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 3","pages":"229-237"},"PeriodicalIF":32.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-resolution optical fluctuation imaging\",\"authors\":\"Samrat Basak, Alexey Chizhik, José Ignacio Gallea, Ivan Gligonov, Ingo Gregor, Oleksii Nevskyi, Niels Radmacher, Roman Tsukanov, Jörg Enderlein\",\"doi\":\"10.1038/s41566-024-01571-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a comprehensive review of super-resolution optical fluctuation imaging (SOFI), a robust technique that leverages temporal fluctuations in fluorescence intensity to achieve super-resolution imaging without the need for single-molecule localization. The Review starts with a historical overview of super-resolution microscopy techniques, and then focuses on SOFI’s core principle—the analysis of intensity fluctuations using cumulants to improve spatial resolution. The paper discusses technical challenges, such as photobleaching, blinking kinetics and pixel size limitations, as well as proposing solutions like Fourier upsampling and balanced SOFI to mitigate these issues. Additionally, we discuss potential advancements in the field, including the integration of SOFI with other super-resolution modalities like structured illumination microscopy and image scanning microscopy, and the application of SOFI in cryo-fluorescence microscopy and quantum emitter-based imaging. This paper aims to serve as an essential resource for researchers interested in utilizing SOFI for high-resolution imaging in diverse biological applications. The authors present a review of super-resolution optical fluctuation imaging (SOFI), including its core working principle, recent advances and remaining challenges.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"19 3\",\"pages\":\"229-237\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01571-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01571-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们全面回顾了超分辨率光学波动成像(SOFI),这是一种强大的技术,利用荧光强度的时间波动来实现超分辨率成像,而不需要单分子定位。本文首先回顾了超分辨率显微镜技术的历史,然后重点介绍了SOFI的核心原理——利用累积量分析强度波动以提高空间分辨率。本文讨论了技术挑战,如光漂白、闪烁动力学和像素大小限制,并提出了傅立叶上采样和平衡SOFI等解决方案来缓解这些问题。此外,我们还讨论了该领域的潜在进展,包括SOFI与其他超分辨率模式(如结构照明显微镜和图像扫描显微镜)的集成,以及SOFI在低温荧光显微镜和基于量子发射体的成像中的应用。本文旨在为有兴趣利用SOFI在各种生物应用中进行高分辨率成像的研究人员提供重要资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Super-resolution optical fluctuation imaging

Super-resolution optical fluctuation imaging

Super-resolution optical fluctuation imaging
We present a comprehensive review of super-resolution optical fluctuation imaging (SOFI), a robust technique that leverages temporal fluctuations in fluorescence intensity to achieve super-resolution imaging without the need for single-molecule localization. The Review starts with a historical overview of super-resolution microscopy techniques, and then focuses on SOFI’s core principle—the analysis of intensity fluctuations using cumulants to improve spatial resolution. The paper discusses technical challenges, such as photobleaching, blinking kinetics and pixel size limitations, as well as proposing solutions like Fourier upsampling and balanced SOFI to mitigate these issues. Additionally, we discuss potential advancements in the field, including the integration of SOFI with other super-resolution modalities like structured illumination microscopy and image scanning microscopy, and the application of SOFI in cryo-fluorescence microscopy and quantum emitter-based imaging. This paper aims to serve as an essential resource for researchers interested in utilizing SOFI for high-resolution imaging in diverse biological applications. The authors present a review of super-resolution optical fluctuation imaging (SOFI), including its core working principle, recent advances and remaining challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信