Nf-Root:基于深度学习分析植物根组织发育区域显微图像中外胞体pH值的最佳实践管道。

Quantitative plant biology Pub Date : 2024-12-23 eCollection Date: 2024-01-01 DOI:10.1017/qpb.2024.11
Julian Wanner, Luis Kuhn Cuellar, Luiselotte Rausch, Kenneth W Berendzen, Friederike Wanke, Gisela Gabernet, Klaus Harter, Sven Nahnsen
{"title":"Nf-Root:基于深度学习分析植物根组织发育区域显微图像中外胞体pH值的最佳实践管道。","authors":"Julian Wanner, Luis Kuhn Cuellar, Luiselotte Rausch, Kenneth W Berendzen, Friederike Wanke, Gisela Gabernet, Klaus Harter, Sven Nahnsen","doi":"10.1017/qpb.2024.11","DOIUrl":null,"url":null,"abstract":"<p><p>Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana. This bioinformatics pipeline performs automatic identification of developmental zones in root tissue images. This also includes apoplastic pH measurements, which is useful for modeling hormone signaling and cell physiological responses. We show that this nf-core standard-based pipeline successfully automates tissue zone segmentation and is both high-throughput and highly reproducible. In short, a deep-learning module deploys deterministically trained convolutional neural network models and augments the segmentation predictions with measures of prediction uncertainty and model interpretability, while aiming to facilitate result interpretation and verification by experienced plant biologists. We observed a high statistical similarity between the manually generated results and the output of the nf-root.</p>","PeriodicalId":101358,"journal":{"name":"Quantitative plant biology","volume":"5 ","pages":"e12"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nf-Root: A Best-Practice Pipeline for Deep-Learning-Based Analysis of Apoplastic pH in Microscopy Images of Developmental Zones in Plant Root Tissue.\",\"authors\":\"Julian Wanner, Luis Kuhn Cuellar, Luiselotte Rausch, Kenneth W Berendzen, Friederike Wanke, Gisela Gabernet, Klaus Harter, Sven Nahnsen\",\"doi\":\"10.1017/qpb.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana. This bioinformatics pipeline performs automatic identification of developmental zones in root tissue images. This also includes apoplastic pH measurements, which is useful for modeling hormone signaling and cell physiological responses. We show that this nf-core standard-based pipeline successfully automates tissue zone segmentation and is both high-throughput and highly reproducible. In short, a deep-learning module deploys deterministically trained convolutional neural network models and augments the segmentation predictions with measures of prediction uncertainty and model interpretability, while aiming to facilitate result interpretation and verification by experienced plant biologists. We observed a high statistical similarity between the manually generated results and the output of the nf-root.</p>\",\"PeriodicalId\":101358,\"journal\":{\"name\":\"Quantitative plant biology\",\"volume\":\"5 \",\"pages\":\"e12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative plant biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qpb.2024.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative plant biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与细胞伸长相关的激素机制在植物的发育和生长中起着至关重要的作用。在这里,我们报告了Nextflow-root (nf-root),这是一种基于深度学习的植物根组织荧光显微镜图像分析的新型最佳实践管道。这个生物信息学管道在根组织图像中执行发育区域的自动识别。这还包括外胞体pH测量,这对模拟激素信号传导和细胞生理反应很有用。我们表明,这种基于非核心标准的管道成功地自动化了组织区域分割,并且具有高通量和高可重复性。简而言之,深度学习模块部署了确定性训练的卷积神经网络模型,并通过预测不确定性和模型可解释性来增强分割预测,同时旨在促进经验丰富的植物生物学家对结果的解释和验证。我们观察到,人工生成的结果与n -root的输出之间具有很高的统计相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nf-Root: A Best-Practice Pipeline for Deep-Learning-Based Analysis of Apoplastic pH in Microscopy Images of Developmental Zones in Plant Root Tissue.

Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana. This bioinformatics pipeline performs automatic identification of developmental zones in root tissue images. This also includes apoplastic pH measurements, which is useful for modeling hormone signaling and cell physiological responses. We show that this nf-core standard-based pipeline successfully automates tissue zone segmentation and is both high-throughput and highly reproducible. In short, a deep-learning module deploys deterministically trained convolutional neural network models and augments the segmentation predictions with measures of prediction uncertainty and model interpretability, while aiming to facilitate result interpretation and verification by experienced plant biologists. We observed a high statistical similarity between the manually generated results and the output of the nf-root.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信