揭示背侧和腹侧通路在视觉语义解码中的不同效率。

Wei Huang, Ying Tang, Sizhuo Wang, Jingpeng Li, Kaiwen Cheng, Hongmei Yan
{"title":"揭示背侧和腹侧通路在视觉语义解码中的不同效率。","authors":"Wei Huang, Ying Tang, Sizhuo Wang, Jingpeng Li, Kaiwen Cheng, Hongmei Yan","doi":"10.1142/S0129065725500091","DOIUrl":null,"url":null,"abstract":"<p><p>Visual semantic decoding aims to extract perceived semantic information from the visual responses of the human brain and convert it into interpretable semantic labels. Although significant progress has been made in semantic decoding across individual visual cortices, studies on the semantic decoding of the ventral and dorsal cortical visual pathways remain limited. This study proposed a graph neural network (GNN)-based semantic decoding model on a natural scene dataset (NSD) to investigate the decoding differences between the dorsal and ventral pathways in process various parts of speech, including verbs, nouns, and adjectives. Our results indicate that the decoding accuracies for verbs and nouns with motion attributes were significantly higher for the dorsal pathway as compared to those for the ventral pathway. Comparative analyses reveal that the dorsal pathway significantly outperformed the ventral pathway in terms of decoding performance for verbs and nouns with motion attributes, with evidence showing that this superiority largely stemmed from higher-level visual cortices rather than lower-level ones. Furthermore, these two pathways appear to converge in their heightened sensitivity toward semantic content related to actions. These findings reveal unique visual neural mechanisms through which the dorsal and ventral cortical pathways segregate and converge when processing stimuli with different semantic categories.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2550009"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Differential Efficiency of Dorsal and Ventral Pathways in Visual Semantic Decoding.\",\"authors\":\"Wei Huang, Ying Tang, Sizhuo Wang, Jingpeng Li, Kaiwen Cheng, Hongmei Yan\",\"doi\":\"10.1142/S0129065725500091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visual semantic decoding aims to extract perceived semantic information from the visual responses of the human brain and convert it into interpretable semantic labels. Although significant progress has been made in semantic decoding across individual visual cortices, studies on the semantic decoding of the ventral and dorsal cortical visual pathways remain limited. This study proposed a graph neural network (GNN)-based semantic decoding model on a natural scene dataset (NSD) to investigate the decoding differences between the dorsal and ventral pathways in process various parts of speech, including verbs, nouns, and adjectives. Our results indicate that the decoding accuracies for verbs and nouns with motion attributes were significantly higher for the dorsal pathway as compared to those for the ventral pathway. Comparative analyses reveal that the dorsal pathway significantly outperformed the ventral pathway in terms of decoding performance for verbs and nouns with motion attributes, with evidence showing that this superiority largely stemmed from higher-level visual cortices rather than lower-level ones. Furthermore, these two pathways appear to converge in their heightened sensitivity toward semantic content related to actions. These findings reveal unique visual neural mechanisms through which the dorsal and ventral cortical pathways segregate and converge when processing stimuli with different semantic categories.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2550009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065725500091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉语义解码的目的是从人脑的视觉反应中提取可感知的语义信息,并将其转化为可解释的语义标签。尽管在单个视觉皮层的语义解码方面取得了重大进展,但对腹侧和背侧皮层视觉通路的语义解码研究仍然有限。本研究在自然场景数据集(NSD)上提出了一种基于图神经网络(GNN)的语义解码模型,研究了背侧通路和腹侧通路在处理动词、名词和形容词等不同词性时的解码差异。结果表明,背侧通路对带有运动属性的动词和名词的解码准确率显著高于腹侧通路。对比分析表明,背侧通路在解码带有运动属性的动词和名词方面的表现明显优于腹侧通路,有证据表明,这种优势主要来自较高水平的视觉皮层,而不是较低水平的视觉皮层。此外,这两种途径似乎在对与动作相关的语义内容的高度敏感性方面趋于一致。这些发现揭示了独特的视觉神经机制,通过该机制,背侧和腹侧皮质通路在处理不同语义类别的刺激时分离和融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the Differential Efficiency of Dorsal and Ventral Pathways in Visual Semantic Decoding.

Visual semantic decoding aims to extract perceived semantic information from the visual responses of the human brain and convert it into interpretable semantic labels. Although significant progress has been made in semantic decoding across individual visual cortices, studies on the semantic decoding of the ventral and dorsal cortical visual pathways remain limited. This study proposed a graph neural network (GNN)-based semantic decoding model on a natural scene dataset (NSD) to investigate the decoding differences between the dorsal and ventral pathways in process various parts of speech, including verbs, nouns, and adjectives. Our results indicate that the decoding accuracies for verbs and nouns with motion attributes were significantly higher for the dorsal pathway as compared to those for the ventral pathway. Comparative analyses reveal that the dorsal pathway significantly outperformed the ventral pathway in terms of decoding performance for verbs and nouns with motion attributes, with evidence showing that this superiority largely stemmed from higher-level visual cortices rather than lower-level ones. Furthermore, these two pathways appear to converge in their heightened sensitivity toward semantic content related to actions. These findings reveal unique visual neural mechanisms through which the dorsal and ventral cortical pathways segregate and converge when processing stimuli with different semantic categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信