Oluwatosin David Abodunrin, Khalil El Mabrouk and Meriame Bricha
{"title":"探讨银铈共掺硼硅酸盐生物活性玻璃的生物活性及抗菌性能。","authors":"Oluwatosin David Abodunrin, Khalil El Mabrouk and Meriame Bricha","doi":"10.1039/D4TB02416H","DOIUrl":null,"url":null,"abstract":"<p >Bone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium–silver (Ce–Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol–gel Stöber method to synthesize doped BBGs based on S49B4. Characterization techniques were utilized to evaluate the thermal stability, elemental composition, structural integrity, and morphological properties of the synthesized Ce and AgCe-BBGs. Cytotoxicity was evaluated using a GMSM-K gingival cell line, while antimicrobial tests were conducted using clinical isolates of <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. The characterization results confirmed the successful incorporation of Ce and Ag, resulting in elongated pineal to spherical nanosized BG particles (33–68 nm). Thermal analysis indicated that silver exhibited lower thermal stability compared to cerium. Bioactivity tests indicated that while silver has intrinsic bioactive qualities, elevated cerium levels above 0.5 wt% may inhibit or delay apatite formation by generating insoluble cerium phosphate ions. Lactate dehydrogenase assays demonstrated that among other BBGs, SBAgCe1 showed the highest LDH activity, suggesting mild cytotoxicity. The co-doped BBG exhibited strong antibacterial activity through a complex interaction between Ag and Ce ionic exchange. Nonetheless, a careful balance of Ce and Ag concentrations is critical, as high levels can compromise bioactivity and increase cytotoxicity. The results highlight the potential of SBAgCe0.5 as a candidate for bone tissue engineering applications due to its favourable bioactivity, and antibacterial and cytocompatible properties, emphasizing the importance of optimizing dopant concentrations for therapeutic applications in favour of good health and the well-being of humanity.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 6","pages":" 2100-2113"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the bioactivity and antibacterial properties of silver and cerium co-doped borosilicate bioactive glass†\",\"authors\":\"Oluwatosin David Abodunrin, Khalil El Mabrouk and Meriame Bricha\",\"doi\":\"10.1039/D4TB02416H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium–silver (Ce–Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol–gel Stöber method to synthesize doped BBGs based on S49B4. Characterization techniques were utilized to evaluate the thermal stability, elemental composition, structural integrity, and morphological properties of the synthesized Ce and AgCe-BBGs. Cytotoxicity was evaluated using a GMSM-K gingival cell line, while antimicrobial tests were conducted using clinical isolates of <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. The characterization results confirmed the successful incorporation of Ce and Ag, resulting in elongated pineal to spherical nanosized BG particles (33–68 nm). Thermal analysis indicated that silver exhibited lower thermal stability compared to cerium. Bioactivity tests indicated that while silver has intrinsic bioactive qualities, elevated cerium levels above 0.5 wt% may inhibit or delay apatite formation by generating insoluble cerium phosphate ions. Lactate dehydrogenase assays demonstrated that among other BBGs, SBAgCe1 showed the highest LDH activity, suggesting mild cytotoxicity. The co-doped BBG exhibited strong antibacterial activity through a complex interaction between Ag and Ce ionic exchange. Nonetheless, a careful balance of Ce and Ag concentrations is critical, as high levels can compromise bioactivity and increase cytotoxicity. The results highlight the potential of SBAgCe0.5 as a candidate for bone tissue engineering applications due to its favourable bioactivity, and antibacterial and cytocompatible properties, emphasizing the importance of optimizing dopant concentrations for therapeutic applications in favour of good health and the well-being of humanity.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 6\",\"pages\":\" 2100-2113\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02416h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02416h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Exploring the bioactivity and antibacterial properties of silver and cerium co-doped borosilicate bioactive glass†
Bone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium–silver (Ce–Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol–gel Stöber method to synthesize doped BBGs based on S49B4. Characterization techniques were utilized to evaluate the thermal stability, elemental composition, structural integrity, and morphological properties of the synthesized Ce and AgCe-BBGs. Cytotoxicity was evaluated using a GMSM-K gingival cell line, while antimicrobial tests were conducted using clinical isolates of Escherichia coli and Staphylococcus aureus. The characterization results confirmed the successful incorporation of Ce and Ag, resulting in elongated pineal to spherical nanosized BG particles (33–68 nm). Thermal analysis indicated that silver exhibited lower thermal stability compared to cerium. Bioactivity tests indicated that while silver has intrinsic bioactive qualities, elevated cerium levels above 0.5 wt% may inhibit or delay apatite formation by generating insoluble cerium phosphate ions. Lactate dehydrogenase assays demonstrated that among other BBGs, SBAgCe1 showed the highest LDH activity, suggesting mild cytotoxicity. The co-doped BBG exhibited strong antibacterial activity through a complex interaction between Ag and Ce ionic exchange. Nonetheless, a careful balance of Ce and Ag concentrations is critical, as high levels can compromise bioactivity and increase cytotoxicity. The results highlight the potential of SBAgCe0.5 as a candidate for bone tissue engineering applications due to its favourable bioactivity, and antibacterial and cytocompatible properties, emphasizing the importance of optimizing dopant concentrations for therapeutic applications in favour of good health and the well-being of humanity.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices