{"title":"心血管成像在生存能力测试中的复杂作用。","authors":"Zachariah Nealy, Shuo Wang, Amit R Patel","doi":"10.1016/j.pcad.2024.12.008","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial viability assessment is used to determine if chronically dysfunctional myocardium may benefit from coronary revascularization. Cardiac magnetic resonance with late gadolinium enhancement is the current gold standard for visualizing myocardial scar and provides valuable insight into myocardial viability. Viability assessments can also be made with Cardiac Positron Emission Tomography, Echocardiography, Single Photon Emission Tomography, and Cardiac Computed Tomography with each having advantages and disadvantages. Despite the classical interpretation that viability predicts segmental functional improvement, more recent studies have found that revascularization of viable myocardium has conflicting roles in predicting benefits for patients, especially as it relates to major adverse cardiovascular events, development of heart failure symptoms, and all-cause mortality. This review covers these conflicts along with an in-depth review of the pathophysiologic processes that are fundamental to myocardial viability and the various methods used for determining viability.</p>","PeriodicalId":94178,"journal":{"name":"Progress in cardiovascular diseases","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complex role of cardiovascular imaging in viability testing.\",\"authors\":\"Zachariah Nealy, Shuo Wang, Amit R Patel\",\"doi\":\"10.1016/j.pcad.2024.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial viability assessment is used to determine if chronically dysfunctional myocardium may benefit from coronary revascularization. Cardiac magnetic resonance with late gadolinium enhancement is the current gold standard for visualizing myocardial scar and provides valuable insight into myocardial viability. Viability assessments can also be made with Cardiac Positron Emission Tomography, Echocardiography, Single Photon Emission Tomography, and Cardiac Computed Tomography with each having advantages and disadvantages. Despite the classical interpretation that viability predicts segmental functional improvement, more recent studies have found that revascularization of viable myocardium has conflicting roles in predicting benefits for patients, especially as it relates to major adverse cardiovascular events, development of heart failure symptoms, and all-cause mortality. This review covers these conflicts along with an in-depth review of the pathophysiologic processes that are fundamental to myocardial viability and the various methods used for determining viability.</p>\",\"PeriodicalId\":94178,\"journal\":{\"name\":\"Progress in cardiovascular diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in cardiovascular diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pcad.2024.12.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in cardiovascular diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.pcad.2024.12.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The complex role of cardiovascular imaging in viability testing.
Myocardial viability assessment is used to determine if chronically dysfunctional myocardium may benefit from coronary revascularization. Cardiac magnetic resonance with late gadolinium enhancement is the current gold standard for visualizing myocardial scar and provides valuable insight into myocardial viability. Viability assessments can also be made with Cardiac Positron Emission Tomography, Echocardiography, Single Photon Emission Tomography, and Cardiac Computed Tomography with each having advantages and disadvantages. Despite the classical interpretation that viability predicts segmental functional improvement, more recent studies have found that revascularization of viable myocardium has conflicting roles in predicting benefits for patients, especially as it relates to major adverse cardiovascular events, development of heart failure symptoms, and all-cause mortality. This review covers these conflicts along with an in-depth review of the pathophysiologic processes that are fundamental to myocardial viability and the various methods used for determining viability.