{"title":"揭示基于二苯并呋喃的MMP-12抑制剂的结构成分:基于分子对接的虚拟筛选和分子动力学模拟的比较分类依赖分析。","authors":"Jigme Sangay Dorjay Tamang, Suvankar Banerjee, Balaram Ghosh, Sandip Kumar Baidya, Tarun Jha, Nilanjan Adhikari","doi":"10.1007/s40203-024-00296-z","DOIUrl":null,"url":null,"abstract":"<p><p>The implication of matrix metalloproteinase-12 (MMP-12) in various major disorders including cancer, COPD, cardiovascular disorders, and neurological diseases makes it a potential target for drug discovery. Contemplating the significance of MMP-12, a number of MMP-12 inhibitors were designed, synthesized and tested throughout the world but the non-selective nature of most of those molecules can lead to adverse drug interactions. In contradiction, the dibenzofuran (DBF) and dibenzothiophene (DBT) derivatives showed highly potent and selective MMP-12 inhibition. Therefore, to identify the prime molecular and structural attributes that are affecting the MMP-12 inhibitory activity, the linear discriminant analysis (LDA), Bayesian classification, recursive partitioning, and SARpy analysis were performed to extract the prime attributes of these DBFs and DBTs affecting MMP-12 inhibition. These studies suggested that substructures like isopropyl carboxylic acid, 5-methyl furan, 1,2,4-oxadiazole, and DBT moieties can impart moderate to high contribution for MMP-12 inhibition. Importantly, the outcomes of the current studies were also in agreement with our regression-based study performed earlier. Furthermore, the molecular docking-mediated virtual screening of DBT and DBF analogs of the ChEMBL database demonstrated the viability of other DBT and DBF analogs to become potential MMP-12-selective inhibitors. The molecular dynamics (MD) simulation study of hit molecules also showed the potential of the combination of phosphonic acid ZBG and DBF P1' substituent for effective anchoring/binding at the MMP-12 active site. Therefore, the findings may help in the discovery and designing of novel MMP-12 inhibitors that may be used for the treatment of various pathological diseases including cancer and COPD.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00296-z.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704098/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling structural components of dibenzofuran-based MMP-12 inhibitors: a comparative classification-dependent analysis with molecular docking-based virtual screening and molecular dynamics simulation.\",\"authors\":\"Jigme Sangay Dorjay Tamang, Suvankar Banerjee, Balaram Ghosh, Sandip Kumar Baidya, Tarun Jha, Nilanjan Adhikari\",\"doi\":\"10.1007/s40203-024-00296-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The implication of matrix metalloproteinase-12 (MMP-12) in various major disorders including cancer, COPD, cardiovascular disorders, and neurological diseases makes it a potential target for drug discovery. Contemplating the significance of MMP-12, a number of MMP-12 inhibitors were designed, synthesized and tested throughout the world but the non-selective nature of most of those molecules can lead to adverse drug interactions. In contradiction, the dibenzofuran (DBF) and dibenzothiophene (DBT) derivatives showed highly potent and selective MMP-12 inhibition. Therefore, to identify the prime molecular and structural attributes that are affecting the MMP-12 inhibitory activity, the linear discriminant analysis (LDA), Bayesian classification, recursive partitioning, and SARpy analysis were performed to extract the prime attributes of these DBFs and DBTs affecting MMP-12 inhibition. These studies suggested that substructures like isopropyl carboxylic acid, 5-methyl furan, 1,2,4-oxadiazole, and DBT moieties can impart moderate to high contribution for MMP-12 inhibition. Importantly, the outcomes of the current studies were also in agreement with our regression-based study performed earlier. Furthermore, the molecular docking-mediated virtual screening of DBT and DBF analogs of the ChEMBL database demonstrated the viability of other DBT and DBF analogs to become potential MMP-12-selective inhibitors. The molecular dynamics (MD) simulation study of hit molecules also showed the potential of the combination of phosphonic acid ZBG and DBF P1' substituent for effective anchoring/binding at the MMP-12 active site. Therefore, the findings may help in the discovery and designing of novel MMP-12 inhibitors that may be used for the treatment of various pathological diseases including cancer and COPD.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00296-z.</p>\",\"PeriodicalId\":94038,\"journal\":{\"name\":\"In silico pharmacology\",\"volume\":\"13 1\",\"pages\":\"10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704098/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In silico pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-024-00296-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00296-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Unveiling structural components of dibenzofuran-based MMP-12 inhibitors: a comparative classification-dependent analysis with molecular docking-based virtual screening and molecular dynamics simulation.
The implication of matrix metalloproteinase-12 (MMP-12) in various major disorders including cancer, COPD, cardiovascular disorders, and neurological diseases makes it a potential target for drug discovery. Contemplating the significance of MMP-12, a number of MMP-12 inhibitors were designed, synthesized and tested throughout the world but the non-selective nature of most of those molecules can lead to adverse drug interactions. In contradiction, the dibenzofuran (DBF) and dibenzothiophene (DBT) derivatives showed highly potent and selective MMP-12 inhibition. Therefore, to identify the prime molecular and structural attributes that are affecting the MMP-12 inhibitory activity, the linear discriminant analysis (LDA), Bayesian classification, recursive partitioning, and SARpy analysis were performed to extract the prime attributes of these DBFs and DBTs affecting MMP-12 inhibition. These studies suggested that substructures like isopropyl carboxylic acid, 5-methyl furan, 1,2,4-oxadiazole, and DBT moieties can impart moderate to high contribution for MMP-12 inhibition. Importantly, the outcomes of the current studies were also in agreement with our regression-based study performed earlier. Furthermore, the molecular docking-mediated virtual screening of DBT and DBF analogs of the ChEMBL database demonstrated the viability of other DBT and DBF analogs to become potential MMP-12-selective inhibitors. The molecular dynamics (MD) simulation study of hit molecules also showed the potential of the combination of phosphonic acid ZBG and DBF P1' substituent for effective anchoring/binding at the MMP-12 active site. Therefore, the findings may help in the discovery and designing of novel MMP-12 inhibitors that may be used for the treatment of various pathological diseases including cancer and COPD.
Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00296-z.