自由表面和多相流的光滑粒子流体力学研究进展。

David Le Touzé, Andrea Colagrossi
{"title":"自由表面和多相流的光滑粒子流体力学研究进展。","authors":"David Le Touzé, Andrea Colagrossi","doi":"10.1088/1361-6633/ada80f","DOIUrl":null,"url":null,"abstract":"<p><p>The smoothed particle hydrodynamics (SPH) method is expanding and is being applied to more and more fields, particularly in engineering. The majority of current SPH developments deal with free-surface and multiphase flows, especially for situations where geometrically complex interface configurations are involved. The present review article covers the last 25 years of development of the method to simulate such flows, discussing the related specific features of the method. A path is drawn to link the milestone articles on the topic, and the main related theoretical and numerical issues are investigated. In particular, several SPH schemes have been derived over the years, based on different assumptions. The main ones are presented and discussed in this review underlining the different contexts and the ways in which they were derived, resulting in similarities and differences. In addition, a summary is provided of the recent corrections proposed to increase the accuracy, stability and robustness of SPH schemes in the context of free-surface and multiphase flows. Future perspectives of development are identified, placing the method within the panorama of Computational Fluid Dynamics.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothed particle hydrodynamics for free-surface and multiphase flows: a review.\",\"authors\":\"David Le Touzé, Andrea Colagrossi\",\"doi\":\"10.1088/1361-6633/ada80f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The smoothed particle hydrodynamics (SPH) method is expanding and is being applied to more and more fields, particularly in engineering. The majority of current SPH developments deal with free-surface and multiphase flows, especially for situations where geometrically complex interface configurations are involved. The present review article covers the last 25 years of development of the method to simulate such flows, discussing the related specific features of the method. A path is drawn to link the milestone articles on the topic, and the main related theoretical and numerical issues are investigated. In particular, several SPH schemes have been derived over the years, based on different assumptions. The main ones are presented and discussed in this review underlining the different contexts and the ways in which they were derived, resulting in similarities and differences. In addition, a summary is provided of the recent corrections proposed to increase the accuracy, stability and robustness of SPH schemes in the context of free-surface and multiphase flows. Future perspectives of development are identified, placing the method within the panorama of Computational Fluid Dynamics.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ada80f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ada80f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光滑粒子流体力学(SPH)方法在越来越多的领域得到了扩展和应用,特别是在工程领域。目前大多数SPH开发都涉及自由表面和多相流,特别是涉及几何复杂界面配置的情况。这篇综述文章涵盖了过去25年来模拟这种流动的方法的发展,讨论了该方法的相关具体特征。绘制了一条路径来连接关于该主题的里程碑文章,并研究了主要的相关理论和数值问题。特别是,基于不同的假设,多年来推导了几种SPH格式。本文将介绍和讨论这些主要词汇,并强调它们的不同背景和产生方式,从而得出它们的异同。此外,总结了最近提出的修正,以提高SPH方案在自由表面和多相流背景下的准确性、稳定性和鲁棒性,并确定了将该方法置于计算流体动力学全景中的未来发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothed particle hydrodynamics for free-surface and multiphase flows: a review.

The smoothed particle hydrodynamics (SPH) method is expanding and is being applied to more and more fields, particularly in engineering. The majority of current SPH developments deal with free-surface and multiphase flows, especially for situations where geometrically complex interface configurations are involved. The present review article covers the last 25 years of development of the method to simulate such flows, discussing the related specific features of the method. A path is drawn to link the milestone articles on the topic, and the main related theoretical and numerical issues are investigated. In particular, several SPH schemes have been derived over the years, based on different assumptions. The main ones are presented and discussed in this review underlining the different contexts and the ways in which they were derived, resulting in similarities and differences. In addition, a summary is provided of the recent corrections proposed to increase the accuracy, stability and robustness of SPH schemes in the context of free-surface and multiphase flows. Future perspectives of development are identified, placing the method within the panorama of Computational Fluid Dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信