{"title":"单细胞和空间转录组分析揭示了维持子宫内膜异位症病变生长的生态位相互作用。","authors":"Song Liu, Xiaoyan Li, Zhiyue Gu, Jiayu Wu, Shuangzheng Jia, Jinghua Shi, Yi Dai, Yushi Wu, Hailan Yan, Jing Zhang, Yan You, Xiaowei Xue, Lulu Liu, Jinghe Lang, Xiaoyue Wang, Jinhua Leng","doi":"10.1016/j.xgen.2024.100737","DOIUrl":null,"url":null,"abstract":"<p><p>Endometriosis is a chronic condition with limited therapeutic options. The molecular aberrations promoting ectopic attachment and interactions with the local microenvironment sustaining lesion growth have been unclear, prohibiting development of targeted therapies. Here, we performed single-cell and spatial transcriptomic profiling of ectopic lesions and eutopic endometrium in endometriosis. We found that ectopic endometrial stromal (EnS) cells retained cyclical gene expression patterns of their eutopic counterparts while exhibiting unique gene expression that contributes to the pathogenesis of endometriosis. We identified two distinct ovarian stromal cells (OSCs) localized at different zones of the lesion, showing differential gene expression profiles associated with fibrosis and inflammation, respectively. We also identified WNT5A upregulation and aberrant activation of non-canonical WNT signaling in endometrial stromal cells that may contribute to the lesion establishment, offering novel targets for therapeutic intervention. These data will enhance our understanding of the molecular mechanisms underlying endometriosis and paves the way for developing non-hormonal treatments.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"5 1","pages":"100737"},"PeriodicalIF":11.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770218/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell and spatial transcriptomic profiling revealed niche interactions sustaining growth of endometriotic lesions.\",\"authors\":\"Song Liu, Xiaoyan Li, Zhiyue Gu, Jiayu Wu, Shuangzheng Jia, Jinghua Shi, Yi Dai, Yushi Wu, Hailan Yan, Jing Zhang, Yan You, Xiaowei Xue, Lulu Liu, Jinghe Lang, Xiaoyue Wang, Jinhua Leng\",\"doi\":\"10.1016/j.xgen.2024.100737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometriosis is a chronic condition with limited therapeutic options. The molecular aberrations promoting ectopic attachment and interactions with the local microenvironment sustaining lesion growth have been unclear, prohibiting development of targeted therapies. Here, we performed single-cell and spatial transcriptomic profiling of ectopic lesions and eutopic endometrium in endometriosis. We found that ectopic endometrial stromal (EnS) cells retained cyclical gene expression patterns of their eutopic counterparts while exhibiting unique gene expression that contributes to the pathogenesis of endometriosis. We identified two distinct ovarian stromal cells (OSCs) localized at different zones of the lesion, showing differential gene expression profiles associated with fibrosis and inflammation, respectively. We also identified WNT5A upregulation and aberrant activation of non-canonical WNT signaling in endometrial stromal cells that may contribute to the lesion establishment, offering novel targets for therapeutic intervention. These data will enhance our understanding of the molecular mechanisms underlying endometriosis and paves the way for developing non-hormonal treatments.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\"5 1\",\"pages\":\"100737\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770218/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Single-cell and spatial transcriptomic profiling revealed niche interactions sustaining growth of endometriotic lesions.
Endometriosis is a chronic condition with limited therapeutic options. The molecular aberrations promoting ectopic attachment and interactions with the local microenvironment sustaining lesion growth have been unclear, prohibiting development of targeted therapies. Here, we performed single-cell and spatial transcriptomic profiling of ectopic lesions and eutopic endometrium in endometriosis. We found that ectopic endometrial stromal (EnS) cells retained cyclical gene expression patterns of their eutopic counterparts while exhibiting unique gene expression that contributes to the pathogenesis of endometriosis. We identified two distinct ovarian stromal cells (OSCs) localized at different zones of the lesion, showing differential gene expression profiles associated with fibrosis and inflammation, respectively. We also identified WNT5A upregulation and aberrant activation of non-canonical WNT signaling in endometrial stromal cells that may contribute to the lesion establishment, offering novel targets for therapeutic intervention. These data will enhance our understanding of the molecular mechanisms underlying endometriosis and paves the way for developing non-hormonal treatments.