生物可吸收聚乳酸(PLA)和聚4-羟基丁酸(P4HB)经编间隔织物支架成骨分化的体外评价。

Flavia Caronna, Skander Limem, Ly Dang Khoa Do, William Ronan, Eimear B Dolan
{"title":"生物可吸收聚乳酸(PLA)和聚4-羟基丁酸(P4HB)经编间隔织物支架成骨分化的体外评价。","authors":"Flavia Caronna, Skander Limem, Ly Dang Khoa Do, William Ronan, Eimear B Dolan","doi":"10.1088/1748-605X/ada85d","DOIUrl":null,"url":null,"abstract":"<p><p>Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre-based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were cultured<i>in vitro</i>on two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties. Scaffold structure and yarn properties were characterized after manufacturing. Cells were seeded on the two scaffolds and treated with osteogenic media for up to 35 days. Both scaffolds supported similar cell growth patterns, featuring a higher cell density on multifilament yarns, which could be beneficial to drive cell proliferation or related phenomena in localized area of the construct. The increase in alkaline phosphatase activity and the calcium deposition observed on some PLA and P4HB scaffolds after 28 and 35 days of culture, confirm their potential to support MC3T3-E1 cells differentiation, however inconsistent mineralization was observed on the scaffolds. Due to their structural and morphological features, ability to support cell attachment and growth, and their limited osteogenic potential, these PLA and P4HB bioabsorbable textile scaffolds are recommended for further investigation for bone tissue engineering applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vitro</i>evaluation of bioabsorbable poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB) warp-knitted spacer fabric scaffolds for osteogenic differentiation.\",\"authors\":\"Flavia Caronna, Skander Limem, Ly Dang Khoa Do, William Ronan, Eimear B Dolan\",\"doi\":\"10.1088/1748-605X/ada85d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre-based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were cultured<i>in vitro</i>on two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties. Scaffold structure and yarn properties were characterized after manufacturing. Cells were seeded on the two scaffolds and treated with osteogenic media for up to 35 days. Both scaffolds supported similar cell growth patterns, featuring a higher cell density on multifilament yarns, which could be beneficial to drive cell proliferation or related phenomena in localized area of the construct. The increase in alkaline phosphatase activity and the calcium deposition observed on some PLA and P4HB scaffolds after 28 and 35 days of culture, confirm their potential to support MC3T3-E1 cells differentiation, however inconsistent mineralization was observed on the scaffolds. Due to their structural and morphological features, ability to support cell attachment and growth, and their limited osteogenic potential, these PLA and P4HB bioabsorbable textile scaffolds are recommended for further investigation for bone tissue engineering applications.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ada85d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada85d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物可吸收纤维支架在骨组织工程中具有广阔的应用前景。它们可调节的、多孔的、基于纤维的结构类似于天然的细胞外基质,它们可以在被人体逐渐吸收的同时维持组织生长。本实验将永生化小鼠颅骨成骨前细胞MC3T3-E1细胞体外培养于两种由聚乳酸(PLA)和聚4-羟基丁酸酯(P4HB)制成的经编生物可吸收间隔织物支架上,研究其成骨性能。制备后对支架结构和纱线性能进行了表征。将细胞植入两个支架上,用成骨培养基处理35天。两种支架支持相似的细胞生长模式,在多丝纱线上具有更高的细胞密度,这可能有利于促进细胞增殖或在构建的局部区域出现相关现象。在培养28天和35天后,部分PLA和P4HB支架上ALP活性和钙沉积的增加证实了它们支持MC3T3-E1细胞分化的潜力,但支架上观察到不一致的矿化。由于其结构和形态特征,支持细胞附着和生长的能力以及有限的成骨潜力,这些PLA和P4HB生物可吸收纺织支架值得进一步研究用于骨组织工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vitroevaluation of bioabsorbable poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB) warp-knitted spacer fabric scaffolds for osteogenic differentiation.

Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre-based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were culturedin vitroon two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties. Scaffold structure and yarn properties were characterized after manufacturing. Cells were seeded on the two scaffolds and treated with osteogenic media for up to 35 days. Both scaffolds supported similar cell growth patterns, featuring a higher cell density on multifilament yarns, which could be beneficial to drive cell proliferation or related phenomena in localized area of the construct. The increase in alkaline phosphatase activity and the calcium deposition observed on some PLA and P4HB scaffolds after 28 and 35 days of culture, confirm their potential to support MC3T3-E1 cells differentiation, however inconsistent mineralization was observed on the scaffolds. Due to their structural and morphological features, ability to support cell attachment and growth, and their limited osteogenic potential, these PLA and P4HB bioabsorbable textile scaffolds are recommended for further investigation for bone tissue engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信