{"title":"金纳米笼与马花苋提取物联合光热/光动力治疗4T1乳腺癌细胞系","authors":"Dheeraj Dehariya, Anindita Tarafdar, Monika Pebam, Sri Amruthaa Sankaranarayanan, Sajmina Khatun, Aravind Kumar Rengan","doi":"10.1088/1748-605X/ada83e","DOIUrl":null,"url":null,"abstract":"<p><p>Photothermal therapy (PTT) and photodynamic therapy (PDT) have been emerging as potential alternatives to conventional cancer treatment modalities. Gold nanoparticles, owing to their surface plasmon resonance properties, have been promising in cancer phototherapies, and extracts from potent medicinal plants are commonly employed for the green synthesis of various nanoparticles. Some researchers have used photosensitizers like chlorophyll to promote reactive oxygen species generation. In this research, the photothermal ability of gold and the photon-absorbing capability of chlorophyll derived from<i>Spinacia oleracea</i>(<i>S. oleracea</i>) are combined to achieve the optimum results. Herein, we have synthesized the gold nanocages(AuNCs) co-assembled with<i>S. oleracea</i>extract (SPAuNCs; 70 ± 10 nm) to be employed as a PTT and PDT agent to treat triple-negative breast cancer. This study found that SPAuNCs are promising PTT and PDT agents against breast cancer cell line.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gold nanocages co-assembled with<i>Spinacia oleracea</i>extract combined photothermal/photodynamic therapy in 4T1 breast cancer cell line.\",\"authors\":\"Dheeraj Dehariya, Anindita Tarafdar, Monika Pebam, Sri Amruthaa Sankaranarayanan, Sajmina Khatun, Aravind Kumar Rengan\",\"doi\":\"10.1088/1748-605X/ada83e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photothermal therapy (PTT) and photodynamic therapy (PDT) have been emerging as potential alternatives to conventional cancer treatment modalities. Gold nanoparticles, owing to their surface plasmon resonance properties, have been promising in cancer phototherapies, and extracts from potent medicinal plants are commonly employed for the green synthesis of various nanoparticles. Some researchers have used photosensitizers like chlorophyll to promote reactive oxygen species generation. In this research, the photothermal ability of gold and the photon-absorbing capability of chlorophyll derived from<i>Spinacia oleracea</i>(<i>S. oleracea</i>) are combined to achieve the optimum results. Herein, we have synthesized the gold nanocages(AuNCs) co-assembled with<i>S. oleracea</i>extract (SPAuNCs; 70 ± 10 nm) to be employed as a PTT and PDT agent to treat triple-negative breast cancer. This study found that SPAuNCs are promising PTT and PDT agents against breast cancer cell line.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ada83e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada83e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gold nanocages co-assembled withSpinacia oleraceaextract combined photothermal/photodynamic therapy in 4T1 breast cancer cell line.
Photothermal therapy (PTT) and photodynamic therapy (PDT) have been emerging as potential alternatives to conventional cancer treatment modalities. Gold nanoparticles, owing to their surface plasmon resonance properties, have been promising in cancer phototherapies, and extracts from potent medicinal plants are commonly employed for the green synthesis of various nanoparticles. Some researchers have used photosensitizers like chlorophyll to promote reactive oxygen species generation. In this research, the photothermal ability of gold and the photon-absorbing capability of chlorophyll derived fromSpinacia oleracea(S. oleracea) are combined to achieve the optimum results. Herein, we have synthesized the gold nanocages(AuNCs) co-assembled withS. oleraceaextract (SPAuNCs; 70 ± 10 nm) to be employed as a PTT and PDT agent to treat triple-negative breast cancer. This study found that SPAuNCs are promising PTT and PDT agents against breast cancer cell line.